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SESSION 2 – Shear and Wake Flow Turbulence 

 

Co‐presided by Bob Antonia and Charles Williamson. 

The session comprised 3 parts, each of approximately one hour, as follows: 

(1)   INVITED PAPER.  The invited paper was “Turbulent Shear Layers and Wakes” by Garry 
Brown and and Anatol Roshko. The paper was presented by Garry (Anatol was unfortunately 
not able to attend).  

(2)      PRESENTATIONS.    Two  presentations.  The  first  contribution  “Stability  of  Coherent 
Vortex  Structures  in  Shear  and  Wake  Flows”  (by  Paolo  Luzzatto‐Fegiz  and  Charles 
Williamson)  was  presented  by  Paolo.  The  second  contribution  “Scale‐by‐Scale  Energy 
Budgets which account for the Coherent Motion” (by Luminita Danaila and Robert Antonia) 
was presented by Luminita. 

    The second half of this part was devoted to the viewing of posters – this was combined 
with a coffee break. 

(3)  GENERAL DISCUSSION.   A discussion  (a highly comprehensive edited transcript of this 
discussion,  first generated from recordings and notes by Paolo Luzzatto‐Fegiz,  is attached) 
which  included  brief  presentations  by  Kathepalli  Sreenivasan,  Jim Wallace,  Fazle  Hussain 
and Bill George.  

 

(1)      INVITED  PAPER.  “  Turbulent  Shear  Layers  and  Wakes”.    Garry  Brown  and  Anatol 
Roshko. 

This  very  interesting  presentation  delivered  by  Garry  Brown  reviewed  the  significant 
research  that  has  been  carried  out,  since  the  1961  Marseille  colloquium,  on  coherent 
structures in mixing layers and wakes. One of the major highlights of this 50‐years period is, 
without  doubt,  the  discovery  of  coherent  structures  in  high‐Reynolds  number  turbulent 
mixing  layers  (Brown &  Roshko,  Journal  of  Fluid Mechanics  1974)  comprising  large‐scale, 
predominantly  2‐D,  spanwise  vorticity  rollers  that,  via  the  Biot‐Savart  interaction, 
amalgamate  to  form  even  larger  scale  vortices.  This  picture  differs  drastically  from 
Townsend’s large eddy hypothesis. Their 1974 paper also highlighted the role of the braids 
between  the  large  scale  vortices  in  amplifying  the  streamwise  vorticity, which  triggered a 
series of key papers studying the evolution and significance of streamwise vortices in such 
shear  flows. Garry  discussed  various  aspects  of  the mixing  layer,  such  as  the  relationship 
between  the  Reynolds  stress  and  the  vorticity  flux,  the  entrainment,  mixing  and  mixing 
transition  as  well  as  the  possibility  of  forcing/controlling  this  flow.  He  stressed  the 
importance  of  the Biot‐Savart mechanics  for  the  generation  and  coalescence  of  the  large 



structures. He also identified issues that need to be studied further, perhaps the most major 
one  relating  to  the  universality  of  the  reverse  cascade.  He went  on  to  discuss  the  plane 
wake using available experimental and numerical results. He pointed out that there is strong 
evidence for structure rescaling  in  the  far wake, based on relatively  low Reynolds number 
data. This raises the issue of  whether this rescaling will continue at much higher Reynolds 
numbers and whether  it will  lead to an asymptotic state characterized only by the drag of 
the body and the distance from the body. 

 

(2)   PRESENTATIONS.   

In  her  presentation,  Luminita  pointed  out  that  scale‐by‐scale  energy  budget 
equations  illustrate  the  equilibrium  between  different  physical  processes  through  which 
energy  transits  at  that  scale:  turbulent  advection,  diffusion,  production,  molecular 
dissipation. At finite Reynolds numbers, not only all these phenomena have to be taken into 
account, but the routes towards universality  (“4/5” and “4/3”  laws) depend very much on 
whether the flow is decaying or whether it is forced; for any given flow, the effect of initial 
and  boundary  conditions  may  also  determine  the  route  to  the  asymptotic  state.  The 
available data indicate that, at the same Reynolds number, forced flows tend to be closer to 
the asymptotic state than decaying flows. She then focused on a particular type of decaying 
flow ‐the wake behind a cylinder‐ where however the forcing due to the coherent motion 
(CM)  cannot  be  ignored.  She  then  went  on  to  use  the  scale‐by‐scale  budget  equations 
written  for both  the CM and  random/turbulent motion  (RM), with  the aim of quantifying 
the  energy  exchange  between  these  two  types  of  motions.  Preliminary  phase‐averaged 
results suggest that the kinetic energy transferred by the random motion only, inferred from 
the  total  kinetic  after  subtracting    the kinetic energy of  the CM,  closely  follows  the  route 
that decaying “isotropic” turbulence is expected to take.        

Paolo's  presentation  focused  on  the  stability  of  certain  coherent  vortex  motions. 
There  is of course a  large body of work  linking  instabilities of coherent structures (such as 
merging or tearing) to the dynamics underlying the energy cascade in 2D turbulence. Paolo 
noted that, even for remarkably simple vortex configurations, there has been much debate 
on  their  stability properties  (as established,  for example, by  linear analysis or  simulation). 
Paolo proposed a different stability approach, which  links  the number of unstable modes, 
for a family of steady vortices, to a simple diagram involving velocity and impulse. He also 
showed  how  introducing  imperfections  in  these  flows  enables  one  to  discover  hidden 
bifurcated branches. He  illustrated the use of this approach by considering superharmonic 
instabilities of a Karman street of  finite‐area vortices,  finding  that  the “imperfect‐velocity‐
impulse”  (IVI)  diagram  methodology  gave  stability  boundaries  in  agreement  with  linear 
analysis, while  revealing new  families of  lower‐symmetry  vortex  streets.  Paolo noted  that 
this approach can be used also for other conservative fluid problems, including nonperiodic 
flows, therefore enabling the analysis of other fundamental instabilities. 

 



(3)  GENERAL DISCUSSION.   

As one might have expected, there was a fair amount of discussion in the third part of the 
session (as can be gleaned from the attached transcript, scribed by Paolo Luzzatto‐Fegiz)  . 
This  addressed  some  of  the  key  questions which  emerged  from  the  invited  talk  but  also 
other aspects of  free  shear  flow  turbulence  that were not  covered  in  that  talk. Kathepalli 
Sreenivasan  started  by  making  general  comments,  first  on  the  need  to  understand  the 
complex  relationship  between  turbulence  and  stability,  and  subsequently  on  how 
Kolmogorov’s 1961 Marseille colloquium paper changed our perception of the universality 
of the small scale motion, in particular on how the characteristics of the small scales depend 
on  the  forcing  due  to  the  large  scale  structures.  He went  on  to  discuss  the  difficulties  in 
assessing local isotropy in a shear flow, where the two main parameters that are expected 
to  affect  the  isotropy  are  the  non‐dimensional  mean  shear  and  the  Taylor  microscale 
Reynolds  number.  His  work with  Jorg  Schumacher  has  indicated  that  one may  reach  the 
conclusion  that  local  isotropy  can  be  attained  for  a  suitable  combination  of  these 
parameters when  focusing on  the  third –order moment of  the  streamwise derivative of  v 
(the transverse velocity fluctuation) but that the picture can change drastically when higher 
odd‐order moments  are  considered.  It  would  seem  that  whether  or  not  local  isotropy  is 
actually  attained  depends  very much  on  the  degree  of  scrutiny  one  is  prepared  to  apply 
when testing it. 

 At the end of Kathepalli’s comments, a significant amount of discussion ensued as a result 
of Garry Brown’s comment that one of the realities of turbulent shear flows is that they are 
Reynolds number independent and that “precisely what happens at the small scales can’t be 
critical”  since  the Reynolds  shear  stress, which  seems  to  be well  predicted by  an  entirely 
inviscid two‐dimensional Biot‐Savart driven process, dominates the mechanics of the flow. 
This view was not shared by some of the participants, e.g. Bill George stressed that, even if 
the local Reynolds number remained constant in x, viscosity does play a role, in the context 
of  multi‐point  equations,  in  separating  the  dissipative  scales  from  the  energy  containing 
scales.  

Fazle Hussain emphasized that if there were no coherent structures, we would not be able 
to control the flow. He also pointed out some of the complexities we need to be aware of, 
e.g. as they arise through both ‘tearing’ and ‘reconnection’ cascades, the intricacies of the 
interactions between similar sized   vortices as well as between vortices of quite disparate 
scales. 

Jim Wallace gave a brief overview of phase‐averaged results obtained in a mixing layer using 
a multisensor hot‐wire probe which can determine the velocity gradient tensor to within 5 
Kolmogorov length scales. He was able to examine the spatial relationships in a streamwise 
plane  between  for  example  the  phase‐averaged  velocity  vector  field  and  regions  of  high 
enstrophy,  or  high  Reynolds  stress,  or  production  of  turbulent  energy.  Somewhat 
surprisingly,  the  high  dissipation  rate  was  found  to  be  largely  concentrated  within  the 
rollers. On the other hand, regions of large Reynolds stress and energy production occurred 



along  the  peripheries  of  the  rollers.  There  was  some  ensuing  discussion  of  this  with  no 
definite consensus among participants about some of the features observed by Jim. 

Finally,  Bill  George warned us,  in  his  own  inimitable  fashion,  about  the    pitfalls  of  simply 
following  the  traditional  line,  as  advocated  in  standard  texts.  He  illustrated  this  in  the 
context  of  formulating  a more  general  similarity  or  self‐preservation  analysis  for  jets  and 
wakes than the traditional one which simply assumed or imposed the same similarity scale 
for both the mean velocity and the Reynolds stresses. Such a generalisation quickly leads to 
the  conclusion  that  for  a  particular  type  of  flow,  many  self‐preserving  states  may  be 
possible, each uniquely determined by its  initial conditions. There has now of course been 
ample documentation in support of this this idea. 

In  the  ‘wake’ of  this session,  it may not be unreasonable  to suggest  that perhaps the two 
‘major’  new  contributions  to  the  field  covered  by  this  session  since  the  1961  Marseille 
colloquium have been (1) the identification of coherent structures and appreciation of their 
importance  in terms of furthering our understanding of free shear flows and our ability to 
control  them;  and  (2)  the  importance  of  initial  conditions  in  determining  the  appropriate 
similarity state to which these flows evolve. Points (1) and (2) are of course not unrelated. 
Naturally,  there  is  still much work  to be done, especially  in  terms of providing a plausible 
link  between  (1)  and  (2)  in  order  to  investigate  the  idea  that  different  types  of  coherent 
structures,  which  arise  because  of  different  initial  conditions,  can  lead  to  different 
“asymptotic” states. It may also be appropriate to end with one of Garry Brown’s concluding 
thoughts  :  ”The  subject  stands  at  the beginning of  a new era  in which both  LES  and DNS 
calculations can provide details of  the vorticity  field and the  fluxes of vorticity “.  It  should 
indeed be interesting to see if at the 2061 Marseille colloquium these types of calculations 
will  have  been  able  to  meet  the  challenge  of  predicting  the  underlying  mechanics  and 
momentum transport of the flow for particular initial conditions. 
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DISCUSSION FROM SESSION 2 
 

TCM-2011 
 

DISCUSSION COMPREHENSIVELY SCRIBED BY DR. PAOLO LUZZATTO-FEGIZ. 
 
 
Bob Antonia (Showing one slide): I am putting up this slide mainly to get some of the 
discussion going. The two main issues we might like to discuss are obviously not unrelated. The 
first is concerned with the general importance of coherent structures in free shear flows, their 
dependence on initial conditions , how they affect the transfer of energy from scale to scale and 
their implications with respect to our ability of controlling these flows. Do we believe we have 
suitable analytical tools to address some of these aspects? For example, DNS scale-by-scale two-
point energy budgets would be particularly helpful as we are still struggling to put together 
reliable one-point energy budgets for these flows. The second issue concerns the small scale 
motion and in particular whether we are now convinced that the departure from isotropy of the 
small scale scalar field, due to the effect of the large structures,  is greater than that of the small 
scale velocity field. Sreenivasan has done quite a bit of work on this and I was hoping he might 
be able to comment on this aspect. I remember talking to Stan Corrsin in the early eighties, and 
Stan thought that, in the context of wakes for instance, that local isotropy was ‘alive and well’ in 
the velocity field at large enough Reynolds numbers but he felt that it may not be valid for 
temperature and concentration fields that are convected by locally isotropic turbulence. I 
believe that we now have sufficient evidence that points to the temperature fronts being much 
sharper than the velocity fronts, thus implying that their impact on the anisotropy of the 
temperature field should be greater than on that of the velocity field. Another idea is the 
possibility of relaxing the assumption of local isotropy, replacing it by assuming local 
axisymmetry.  I was hoping Bill George might comment on this although he may also wish to 
comment on the effect of initial conditions on the large structures. Charles and I have lined up 
four people to address various aspects of this, or maybe aspects of Garry’s talk:  Fazle Hussain, 
Jim Wallace, Bill George, and Katepalli Sreenivasan. Each has been allocated about five minutes.  
 
Katepalli Sreenivasan (Using blackboard): Ever since I visited Garry Brown, when he was in 
Adelaide, the question is, it seems like a very important question to ask, what’s the relation 
between turbulence and stability? It’s clear that there is some connection, but it is clear that the 
connection is very complicated, I mean, it is not a very simple 2D stability, and nonorthogonal 
eigenfunctions, not even that simple. It is very much more complicated. So what is the issue? 
What is the relation between stability and turbulence, and exactly what problems does it entail? 
I think it is a very important question. Whatever one has to do, one has to start with this scalar 
problem somehow, by subsuming the small scales into the dynamics somehow. This is what 
Large Eddy Simulations do, by and large, and I want to say a little bit about what we know 
about the small scale, about the so-called universality, and then make some comments about 
what Bob was asking me to do. This is universality in quotation marks. The history of it is very 
elementary. It started with a very nice analysis, particularly by Lee and others. Assume it’s at 
equilibrium, you get a spectrum that scales like k2, not k-2 but k2. We thought it obviously didn’t 
make any sense, so we resolved that very quickly. And Kolmogorov 41 said that in the inertial 
range, only the spectrum matters, ε and ν are both required, and you got this fantastic form for 
the inertial range. But what can K62 do? Which is exactly what Marseille 61 did- since ε is 
intermittent, it effectively brought in the large scales. The forcing scale becomes very important. 
I have in mind something like this, I’m talking about boundary layers for the moment, I have a 
disturbance by an object of length scale L, and its power is u0

3/L, u0 is a velocity scale. So, what 
K62 or intermittency brought, it introduced the large-scale lengthscale forcing, into the 
description of the small scale. And as a result, you have this [see board], for instance, some 
constant, you have the -5/3 law, times kL to the power of minus something, and this is 
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something you will not compute dimensionally, you really have to do some real stuff. And 
what is known is if you go from second order statistics, such as the spectrum, to higher-order 
statistics, this power, equivalent power, will just keep increasing, and it’s not simply 
proportional to this, and that’s really what multifractal scaling, and multiscaling is all about. If 
the velocity of the forcing is strong, not only does the lengthscale of the forcing enter the 
picture, but also the velocity scale does. Unless you are close to u0 = 0, that is some small 
velocity, u0 also makes an entry. So what it means is that, if this is true, the Reynolds number is 
not the entire story, how you create the Reynolds number becomes an issue. For example, you 
take a very large scale, and stir it very slowly, that situation is very difficult from having a small 
scale and stirring it very fast. The two are not identical, once you have u0 also coming into the 
picture. In fact, if you go into more and more details, it looks like more and more details of the 
forcing need to be taken into account, in order to describe the small scales. So, how much of this 
forcing do the small scales remember? I mean, that’s the question, and as I said, we started off 
taking absolutely nothing, remember, equilibrium, equipartition of energy around that, and 
that’s nonsense, and slowly, as we refine our analysis, more and more the driving force 
becomes an issue. Now to the particular worry which Bob Antonia wanted me to talk about; he 
wanted me to discuss it with respect to scalars, but let me discuss it with respect to velocity. So, 
if v is in the direction orthogonal to x, by symmetry, if you have isotropy in the large scale, this 
quantity <(∂v/∂x)3> must be zero, if you have a lot of isotropy. You can measure this in a shear 
flow, and you find it is not zero, it is of the order of 0.5 in magnitude, something like that. This 
tells you that the small scale, because the gradient refers to the small scale, departs from 
isotropy. You’d like to understand how this anisotropy is coming, and how it is related to the 
shear, as Bob had tried to ask. So, Schumacher, with some involvement from me, made some 
numerical simulations, of a homogeneous shear flow, where he varied the shear of the flows, 
from small to large to larger, for different Reynolds numbers, and he produced a 2D plot 
indicating regions where the skewness of the velocity derivative was zero, regions where it was 
nonzero, and then zero again. What he said was, for any given shear, if you increase the 
Reynolds number, the shear becomes isotropic, I mean, the velocity gradient becomes isotropic, 
viz. you recover universality, in some sense. The plot I have drawn here (it’s not, of course, as 
nice as I have drawn), but basically there is a bar there. So, for any given shear, you come to an 
Re*, and it is essentially isotropic or universal. On the other hand,  if you go to the next order, 
the fifth order for instance, the corresponding boundary is no longer here, but it is here. So what 
it means is that, for any given Reynolds number, suppose you have this Reynolds number 
somewhere here, the third-order moment is zero, that means that if you look at third-order 
moments you may conclude that you are isotropic, but if you look at fifth-order moments, it’s 
not. So, for any given Reynolds number, there always exists a moment that is nonzero. So, 
depending on the detail you are willing to buy, depending on the detail which you are able to 
assess in your flow, you will get a different conclusion on the behaviour of the small scales and 
on the universality. So if you are interested in second-order, you can say it is roughly so, it is 
roughly universal, but you go to the next order, and the situation becomes more involved. So, 
there is no simple answer “the stuff is universal”, or “the stuff is not universal”, but it really 
depends on the detail on which you are willing to compromise, or ask the questions. Ultimately 
it is therefore that universality is simply a figment of one’s imagination. Perhaps to some order 
of approximation, you can fortify it and say that it is (or it is not) useful for your purpose. 
Thank you. 
 
Garry Brown: I think that one of the great realities of turbulent shear flows, is that they are 
Reynolds number independent. Precisely what happens at the small scales can’t be critical. I 
mean, what if it was totally inviscid? If it was totally inviscid, and you talk about a whole lot of 
velocity fluctuations, how would you distinguish it then from heat? The flow is independent of 
Reynolds number, and it is a remarkable fact, I think, that in the mixing layer, the Reynolds 
stress dominates the mechanics of the flow, the Reynolds stress is given by the large scale 
vorticity field, and it is independent upon the small-scales, or the three-dimensionality of the 



Session 2 - Wakes - Discussion 

 

flow, and it’s a remarkable fact, that this shear stress is very well predicted by an entirely 
inviscid, two-dimensional, Biot-Savart driven process. That’s amazing. Amazing. I don’t say 
that it’s exactly the same, what I say is that the mechanics is largely driven by that process. Then 
so, for free shear flows, I think the emphasis on whether we have homogeneous isotropic 
turbulence at the smaller scales, is not so significant, to the fundamental mechanics, which is the 
Reynolds stress.  
 
William George: I’d like to disagree with that, Garry. And I think that part of my confusion 
arises from two of the flows that we look at most often, namely the plane wake and the 
axisymmetric jet. If we look at the local Reynolds number, the problem in both of those two 
flows, is that this value is constant,  so whatever you impose at the source, is the same Reynolds 
number all the way down, so you think it is behaving as though it were inviscid, only because 
the Reynolds number is constant. In other words, the relative effect of viscosity does not 
change,  as you move downstream. So the problem is that you’ve been fooled into thinking that 
it’s Reynolds number independent, but in fact the equation for the mean of the single-point 
moments is relatively inviscid. This is not the case for the multi-point equations, and viscosity 
plays a very important role in separating the dissipation range from the energy range, and the 
Reynolds stress, for that matter. I think we’ve been really misled into thinking that these things 
are inviscid, but they aren’t. Viscosity very much affects the second-order moments.  
 
Roddam Narasimha: It’s true that for the wake the Reynolds number remains constant as you 
go downstream, but for the mixing layer, it does not. 
 
William George: Absolutely right. 
 
Roddam Narasimha: It actually grows like x. So that argument won’t cut it, for the mixing layer 
it should be very bad.  
 
William George: No, it should become more and more inviscid, the further you go.  
 
Roddam Narasimha: Yes. So, therefore, what would you like me to say about that? 
 
William George: Well, but it does not have a similarity solution either, so... I mean there are a 
lot of things going on, right? The relative balance of everything is changing, and I would agree 
with you that, asymptotically, the viscous terms are negligible. I mean, eventually you’ll get a 
fully developed 5/3 range in your spectrum, and all the usual things. But you can create a jet 
and a wake, that looks like it’s self-preserving, from almost the beginning.  
 
Roddam Narasimha: For a mixing layer, the calculations have been made, and what they show 
is that, depending on the initial condition, we have a transient, a region which is affected by the 
initial conditions, but in simulations that we’ve done, involving a hundred realizations, with 
10,000 vortices, the result is very clear, the final state is in fact independent of the initial 
conditions.  
 
William George: So what’s the point of disagreement? 
 
Roddam Narasimha: The point is that the growth rate is so close to the experimental values. 
 
William George: But what’s the point of disagreement? That’s a very different flow from what I 
was describing.  
 
Roddam Narasimha: I am reinforcing what Garry said, for the small structure... 
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William George: For one flow! For a flow! That shear layer. 
 
Roddam Narasimha: No, I am saying that for that flow, the inviscid scaling is very precise. 
 
William George: I agree with you. We have no point of conflict here.  
 
Zhen-Su She: I wanted to come back to Sreenivasan’s comments. I seem to agree with 
everybody. But I am afraid the only problem I see is that there is no theory, because any theory 
has to be based on some universality. Now, there is a hierarchy of symmetries here. So, I totally 
agree with this view. But again Garry, there are some scales where there are some universal 
mechanisms, and we’ve done theory for the pipe flow, and all this evidence seems to be 
universal for pipe flow, and I think for the wake as well. Now, there are instances where we 
have to identify those empirical constants, from place to place, and I also agree with you that all 
the issue is not high Reynolds number, it’s how to get asymptotes, that if you go to high 
Reynolds number, it seems to be universal, and so, the point I am making is that there are 
different aspects of universality. If I speak of the Kolmogorov constant itself, it may not be 
universal. But how the Kolmogorov constant varies with Reynolds number, that could be 
universal.  
 
William George: Let me just make a comment. The axisymmetric wake is the opposite of what 
you just described, because the Reynolds number continuously drops, and it shows a very 
string dependence on initial conditions.  
 
Roddam Narasimha: We know that the axisymmetric wake will eventually laminarize. 
 
William George: No, I don’t know that. In fact, I would argue that’s not true. From an 
engineering point of view I can say it laminarizes, from a turbulence point of view it doesn’t. 
When you say it laminarizes, what do you mean? It drops below a certain amount? Or you 
mean you just have no production of energy to balance the dissipation?  
 
Roddam Narasimha: If you look at what happens as you go downstream, you see that the 
dissipation over the production increases. 
 
William George: I think that the numerical analyses have shown that that’s not true. The work 
that Peter Johansson and I did shows that in fact it seems to evolve to a second state, which can 
sustain itself forever, at least in the continuum limit. What you get is a balance between 
different things, just as transport comes in, convection goes out, but it’s a balance between 
different terms, because as the Reynolds number drops, other terms have grown into the 
problem. There are two simulations going on right now: one is at Southampton, and it’s quite 
large. 
 
Keith Moffatt: A frivolous comment, while we wait for Fazle. The cosmologists have had no 
difficulty moving from universes to multiverses, so we should have no difficulty moving from 
universality, to multiversality, if such be the needs. 
 
Fazle Hussain: I wish to emphasize the point that, if there were no coherent structures, you 
could not control the flow. If you have an elliptic jet, the axis will flip flop. If there were no 
coherent structures, there would be no reason for the elliptic jet cross section to flip flop. And 
there is a recent simulation by Gleizer, showing there is no question there is a plethora of 
structures. Typically, we’re interested in the vortex/turbulent interactions, or coherent 
structure/coherent structure interactions. One kind of cascade is tearing, another is 
reconnection. Sreenivasan drew some beautiful pictures of reconnection. There are some other 
examples of superfluid reconnection, and of reconnection in the wake of an aircraft. For a 747, 
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the Reynolds number is 10 million, for each vortex. The current limit for DNS is 10,000. So, as 
Sreeni showed, what does reconnection mean? That there is a topological transformation. This 
is a Kida simulation showing, at a Schmidt number of one, for the first time, that indeed what 
you see ain’t what is there. The left-hand side is a scalar, and the right-hand side is the vorticity 
pattern, in two colliding circular vortices. In the first CTR conference, we did this simulation, of 
two antiparallel vortices, they connect and reconnect, but you see that part of it is left behind, 
and that will reconnect again. This is a more recent one, at higher Reynolds number. It turns out 
that contrary to the situation that Sreeni was talking about, the rate of approach, and rate of 
departure after reconnection, are quite different, and the departure is much more rapid. 
Therefore this must be the most effective part of noise generation, in the acoustic model that I 
proposed in 1980. No one has yet disproven it, but no one has proven it, either. We’re working 
on it. In the picture here, we have reconnection, and then a second reconnection, and so on. So 
one should be able to build a reconnection cascade theory of turbulence. The other question I 
have, in the other slide, is the interaction between completely disparate scales. We have a 
column, which contains very small scales. It turns out, this nonlocal interaction, involves very 
different scales, is the question I think Parviz had raised. How does the structure affect -- it 
does, because as these fine-scale structures are stretched around, they form rings, and rings 
induce bending-wave modes in the column. I think this is an interesting example of completely 
disparate scales. Regarding the last point that Sreeni raised, a turbulent flow can have 
instability, so I don’t know what the question is. Historically, Mark Goldstein and others were 
doing the instability of the time-averaged flow. This makes sense only if the turbulence 
timescales are much smaller than the instability timescales. But if you’re looking for modes at 
the timescale that is comparable with the dominant timescale of the large eddy of the coherent 
structures, then unless you have a floquet theory, the instability of the mean profile makes 
absolutely no sense, even though for some wakes, people have found some connection between 
the instability mode, and the instability calculated from the time-averaged profile.  
 
James Wallace: Bob asked me to say a little bit about what Garry presented about the fine scale 
structure riding on the large two-dimensional vortices in the mixing layer, and also the locality 
of the Reynolds stress. We made some measurements, some years ago, with this probe, it 
approximates the velocity gradient tensor (for that flow, the mixing layer) to within five 
Kolmogorov scales. Using a phase reference, we could extract the phase-averaged velocity field, 
in the streamwise plane, and you could see very clearly in the velocity vectors that are projected 
on the streamwise plane, large-scale rollers, streamlines drawn for those. Then, using phase 
averaging, we could look at fine-scale quantities, like the dissipation rate of the vorticity, the 
enstrophy, and so on, and spatial relationships to the positions of the large-scale rollers. This 
just shows the phase-averaged dissipation rate, superimposed in the colour contours onto the 
plots of the vectors for the rollers, and to my surprise at least, the dissipation rate is largely 
concentrated inside the rollers. So there are obviously very high three-dimensional activity, and 
fine scale activity, in the rollers themselves. The lower plot there is the covariance of the 
streamwise, and cross-stream vorticity, and you can pick up the presence of the streamwise so-
called rib vortices here, and then this is a plot of the phase averaged Reynolds stress, and in 
contrast to the dissipation rate, the Reynolds stress and thus the production rate is around the 
periphery of the rollers, not concentrated in the centers. 
 
Charles Menevau: Just a comment: we made measurements very similar to these, actually 
measuring the subgrid-scale energy dissipation, also conditioned on these structures, and also 
we see this kind of correlation, at scales significantly smaller than the very large scales. There 
are ways of analysing these coherent structures with statistical conditioning that I think 
illuminate quite a bit. But definitely there are correlations. I think that when you do simulations, 
however, those will be included already, because in those regions even the resolved scales will 
be more energetic, more intense. So, a lot of these things are naturally contained in the standard 
LES already.  
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Bob Antonia: Do you see the same as Jim on the dissipation? 
 
Charles Menevau: We have a subgrid scale dissipation instead of the molecular-scale 
dissipation, and it peaks somewhere in between I guess, it doesn’t really peak at the center.  
 
Fazle Hussain: I have a comment. The intensity will get to a maximum in the core, because of 
the lack of precise alignment, but it is very hard to justify how dissipation can be maximum, 
because there is no mechanism to sustain the structures in the core. This is essentially vortical 
flow. Unless you have strain, this cannot be sustained. So most of the dissipation, and Reynolds 
stress, must be outside, in the braids, or in the ribs. Within the core, you can still have high 
fluctuation intensity, but there is no mechanism to sustain fine-scale turbulence within the core. 
 
Garry Brown: I would like to emphasize something that I said firstly, the remarkable picture of 
the mixing transition, measured by molecular mixing. Molecular mixing between reactants in 
the free stream, and indeed we locate the reactants at particular places within the free stream, 
you watch the reactants enter the large structure, and then where is all that product? The 
product is where the dissipation, the molecular diffusion if you like, is high, and from the 
pictures it’s not true that it’s strongly located in the periphery, nor is it true that it’s strongly 
located in the center. At least that was our observation. What is remarkable, is that I could go to 
lower Reynolds numbers, where the mixing, below the mixing transition, where there is 
practically very very little molecular mixing, and I got the same growth rate for the layer. What 
that says is that there are components of the Reynolds stress that are small scale, but the largest 
component, that dominates the growth rate, is coming from the large-scale motion. Now that’s 
true for the mixing layer, and I recognize that the wake is quite different, so I don’t want to be 
confused, but at least the mixing layer that Jim is talking about, I think what he measures is not 
inconsistent with the measurements that we made of the product, but what I think I would 
disagree with is that the Reynolds stress, you could easily be confused about that, because the 
small scales don’t actually contribute very substantially at all to the real Reynolds stress, which 
determines the growth rate of the layer.  
 
Fazle Hussain: I want to inject a point, only Anatol Roshko very recently brought to my notice, 
that in 1993 I had published a paper with [unclear], which is a complete mixing-length theory 
without any assumption. You have a dynamical model of a coherent structure, and its rate of 
evolution, you equate to the strain of the mixing layer. With absolutely no assumptions, this 
gives Reynolds stress, mean profile, as of the real experiment. 
 
Katepalli Sreenivasan: What does it not give? 
 
Fazle Hussain: Higher order moments, many other things. 
 
Bob Antonia: Bill George is going to make the last few comments. 
 
Bill George: One of the questions I want to ask is: “why do we believe things?” I have told my 
students many times. I don’t want to offend anybody. I was raised in a very conservative 
religious tradition, and there were certain things, in being a Conservative Christian, one of them  
was that you were asked to believe certain things that were not exactly... obvious. As you grow 
up, you start asking questions, “why do we believe this?”. The first answer you get is “well the 
bible says...”. That’s a lot like turbulence. “Monin and Yaglom say...”, “Tennekes and Lumley 
say...”. And then you begin to understand that it’s really important that you believe that, 
because if you don’t believe that, you can’t belong to the group. The turbulence community has 
a lot of the same characteristics; if you don’t believe in certain orthodoxies, your life can be 
really difficult, in this community. Having said that, let me go on, because eventually you go to 
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college, and take theology courses, and start learning, you start pushing back: “How did we 
come to believe this? why did we think it was necessary to believe this?”. Again, that’s a lot like 
turbulence. And one of the things that happened to me some years ago, is that one of my 
students asked me these questions, and much to my surprise, I found the answer wasn’t quite 
what I expected, because having been raised in the fine tradition of Tennekes & Lumley, and 
Townsend, I always had some questions, like: “in a turbulent shear flow, you always scale the 
mean velocity this way, and the Reynolds stress was scaled this way”. One day a student asked 
me: “why did we just assume that?” The answer was, of course, ‘it’s in the bible’, meaning 
Tennekes & Lumley, and that of course wasn’t satisfactory. So we started digging back, and 
finally Monin & Yaglom actually provided an explanation. They said imagine a point source of 
momentum, and a large distance away the only thing that these quantities can depend on, other 
than the radial distance, is the momentum or drag of the source, and the distance downstream. 
So you very quickly work your way backwards from this point source argument, and find that 
these both have to scale with U. Well, one of my students said “Why? Couldn’t it be something 
else?” And the answer is YES. And you plug that into the equations, and work it out, and find 
that not only it can be something else, but also it doesn’t have to be a point source of 
momentum, it can retain a dependence on initial conditions. So we came to believe all of these 
things because of an analysis that was wrong, or at least, less general than it needed to be. So 
the question is: “how could we have been so stupid?”. The answer is: “we couldn’t measure 
Reynolds stress”. So the first 30 years of this idea we only measured mean velocity profiles. And 
the really neat thing about this is that it is something that any undergraduate can work out 
really, I’ve tested it at a number of universities, any undergraduate would decide that’s what it 
has to be. The mean velocity profile is completely independent of r. So no matter how you 
studied the flow, no matter how much initial conditions affect these flows, they all go to the 
same mean profile, if you collapse them correctly. The problem is the Reynolds stress. We came 
to believe we needed independence of Reynolds stress, for all the wrong reasons, and we 
believed it so long, that it’s like a religion now, we’re afraid to let it go. Now, I am sure there are 
folks who were asking “how could it be independent of initial conditions?”, and I am sure there 
are other flows that are very strongly dependent on initial conditions. The wake is an example, 
the axisymmetric wake is an example. Probably decaying turbulence is an example.  I think 
Sreeni gave us an example. We can argue all that at dinner.  
 


