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1. Marseille 1961

My credentials for presenting this opening review 1 are slender, relying as they do on the
simple fact that I am one of the handful of surviving participants of the now legendary
1961 Marseille Colloque International du CNRS, Mécanique de la Turbulence (hereafter
Marseille ’61), which this present Colloquium seeks, if not to emulate, at least to com-
memorate. Allow me first to recall some features of that 1961 Colloquium that made
it so special. I draw on the Proceedings (CNRS publication No. 108, 1962) as a jog to
my memory: a large red volume, perhaps less well-known hitherto than it should have
been, but now scanned and accessible on the website <http://turbulence.ens.fr> of this
present meeting.

The Colloquium was organised, and the Proceedings edited, by the late Alexandre Favre,
Membre de l’Académie, who deserves great credit for the memorable character of the
meeting! The Scientific Committee consisted of George Batchelor (my mentor and re-
search supervisor at the time), J.Kampé de Feriet (the ‘éminence grise’ of French me-
chanics), Leslie Kovasznay (USA), H.Schlichting (Germany), and L.Sedov (USSR). In the
event, Schlichting and Sedov were not present at the Colloquium, and Kampé de Feriet
played a figurehead role, so the burden of scientific organisation fell on Batchelor, Ko-
vasznay and Favre; they invited Stan Corrsin, R.W. (Bob) Stewart, and Hans Liepmann
to act as Chairmen of various sessions – all now eminent figures in the history of turbu-
lence. But particularly memorable was the fact that three great father-figures were also
present, namely Theodore von Kármán, G.I. (Sir Geoffrey) Taylor, and A.N. Kolmogorov
(who was accompanied by three colleagues from the Soviet Union, M.D.Millionschikov,
A.M.Obukhov and A.M.Yaglom). This was a unique encounter , during that cold-war
epoch, of great scientists from East and West, something that Batchelor had been par-
ticularly keen to engineer in difficult political circumstances. The the cold war was at
its height: the Berlin blockade was in force from July to November that year, when the
infamous Berlin Wall was constructed.

2. K41 and Kolmogorov’s 1961 lecture

Kolmogorov’s (1941) theory (K41) was then, as still even now, a central pillar of un-
derstanding of the mechanics of turbulence, and so it was particularly fitting that he
should be present. In fact, a highlight of the meeting, alluded to only in a footnote to

1Lecture delivered at the Turbulence Colloquium, Marseille 2011, commemorating Mécanique de la
Turbulence, Marseille 1961.
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the paper by T.H.Ellison (page 115 of the Proceedings), was the display of slides by
Stewart from the observations later published in JFM (Grant, Stewart & Molliet 1962)
of turbulent spectra in a tidal channel at Reynolds number based on depth and mean
velocity up to 3 × 108. These experiments provided what Ellison described as “by far
the most convincing demonstration of the correctness of the Kolmogorov theory that has
yet been made”. This was of exceptional importance for two reasons: first, because huge
effort had been expended, particularly by Batchelor (1953, and references therein) in
promoting the Kolmogorov theory, and much of the current understanding relied on the
Kolmogorovian concept of the ‘energy cascade’ and the k−5/3 energy spectrum to which
this gave rise; and second, because this picture was being currently challenged by the
alternative ‘direct-interaction’ theory of Kraichnan (1959) which led to a significantly

different (k−3/2) spectrum. The tidal-channel observations reported by Stewart gave
unambiguous support for the Kolmogorov scenario.

So far, so good! But then Kolmogorov was invited to give his lecture with the title
“Précisions sur la structure locale de la turbulence dans un fluide visqueux aux nombres
de Reynolds élevés”. The paper is reproduced in both French and Russian in the Pro-
ceedings, and in English translation in JFM (Kolmogorov 1962). Kolmogorov delivered
his lecture in French, and his only visual aid was the blackboard. What was so startling
was that (following reference to parallel work of Obukhov and to comments that he
attributed to Landau) Kolmogorov proceeded to point out fundamental inconsistencies
in his own (1941) theory, in that this theory failed to take account of the spatial fluctu-
ations in the rate of turbulent dissipation of energy ε, the key parameter of the theory.
Kolmogorov offered arguments supporting a log-normal probability distribution for this
quantity, and showed that the exponent in the energy spectrum would be slightly mod-
ified through this ‘intermittency’ effect. (Later work on the behaviour of higher-order
structure functions of the form Sn(r) =<(u(x+r)−u(x))n>, for n = 2, 3, 4, . . . , where
u is, say, the velocity component parallel to the direction of the separation vector r has
revealed that Kolmogorov’s log-normal assumption itself is untenable (Anselmet et al.
1984, Frisch 1991).)

This lecture, Kolmogorov’s final contribution to turbulence, was, to put it mildly, a bit of
a bombshell! There had been hints previously that all was not well with the Kolmogorov
picture; in particular, as described in Batchelor’s (1953) monograph, the dimensionless
flatness factor of the velocity derivative

(1) F =

〈
(∂u/∂x)4

〉
〈(∂u/∂x)2〉2

,

which, on the Kolmogorov theory should be a universal constant in the limit of large
Reynolds number Re, in fact showed a worrying experimental increase with increasing
Re, with no tendency to settle down to a limiting constant value. The implication was
that, as Re increases, the vorticity of the turbulence tends to become more and more
concentrated in ‘fine structures’ (vortex tubes and/or sheets being the most natural
candidates), a picture that was hard to reconcile with the idea of an energy cascade
from the energy-containing scale l0 through a geometric sequence of length scales like
2−nl0. Kolmogorov’s revised theory, taking account of the intermittency of ε(x, t), was



HOMOGENEOUS TURBULENCE: AN INTRODUCTORY REVIEW 3

however potentially capable of explaining the increase of F with Re, and even more so,
of the behaviour of higher-order statistical properties of the small-scale features of the
turbulence (including in particular the vorticity field).

3. Intermittency and the finite-time singularity problem

Kolmogorov’s paper marked the onset of a widespread effort in the turbulence research
community to understand the phenomenon of intermittency, for which many competing
models have been proposed. This has been much stimulated on the one hand by the de-
tection of concentrated vortices within a field of turbulence (Douady, Couder & Brachet,
1991) and on the other by Direct Numerical Simulations (DNS), which display turbu-
lence as a random superposition of concentrations of vortex tubes on all scales from the
Taylor microscale ∼ l0Re

−1/2 down to the Kolmogorov scale ∼ l0Re
−3/4 (e.g. Vincent

& Meneguzzi 1991, Yokokawa et al. 2002). The cascade picture has now given way to
a picture in which the progressive degradation of energy from large to small scales is
simply a consequence of vortex tube stretching, each vortex tube being locally stretched
(with associated decrease of cross-section, i.e. decrease of scale) by the straining flow
induced by all the other vortices of the field of turbulence.

This revised picture has in turn restimulated interest in the fundamental problems of
regularity associated with the Euler equations and the Navier-Stokes equations at very
high Re as first addressed by Leray (1934): given smooth initial conditions for the
vorticity field, does this field in general remain smooth for all time, or alternatively,
do there exist smooth initial conditions from which a singularity of vorticity emerges
within a finite time? The question is of course fascinating in its own right, and quite
independently of the general problem of turbulence. The natural initial condition to
consider is a vortex-tube tangle, each tube containing axial vorticity of gaussian cross-
section. Is it not amazing that we still don’t know whether such tangles can lead to
a singularity or not! DNS is as yet inconclusive, in no small part because numerical
techniques inevitably break down as a singularity is approached. If a singularity can
indeed form, then some kind of self-similar structure of scale decreasing to zero at the
singularity time is to be expected, but such description remains elusive.

The problem is important for turbulence, because it has an obvious bearing on the struc-
ture of turbulence at the smallest scales. Considering for the moment the inviscid limit
ν → 0, the Kolmogorov spectrum extends to wavenumber k =∞ (i.e. zero length-scale).
The time-scale for energy transfer from scale k−1 to scale zero, as determined dimen-
sionally from ε and k, is then tk = ε−1/3k−2/3. This suggests that in the Euler limit,
singularities must develop at finite time. Of course a divergent vorticity spectrum ∼ k1/3
suggests this also. But no explicit solution of the Euler equations has as yet revealed the
singular asymptotic structure of the vorticity field that such arguments might suggest.

4. The paradox of the skewness factor
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A related puzzle concerns the skewness factor of the velocity derivative

(2) S =

〈
(∂u/∂x)3

〉
〈(∂u/∂x)2〉3/2

,

which again, on K41 theory, should be a universal constant in the limit Re→∞. Batch-
elor said in his Marseille ’61 lecture that “the available measurements ... suggest that it
is still decreasing (in magnitude) at the highest Reynolds numbers of the measurements,
and we cannot yet be sure that the asymptotic value is non-zero”. This remains a crucial
issue, because in 3D isotropic turbulence

(3)
〈
ω3
〉
∼ |S|

〈
ω2
〉3/2

,

and the enstrophy equation takes the form

(4)
∂
〈
ω2
〉

∂t
= C

〈
ω2
〉3/2 − 2ν

〈
(∇× ω)2

〉
,

where C is a dimensionbless positive constant proportional to |S|. In the formal limit
ν = 0, this equation implies blow-up of enstrophy in a finite time, and again, this would
appear to imply the appearance of singularities in the vorticity distribution, at least in
the Euler limit. So what is the latest information on the skewness factor in the high Re
limit? I don’t know that we are any nearer to a definite answer to this central question
than we were in 1961, but I hope I may learn the answer at this meeting!

5. Kraichnan’s direct interaction approximation

Bob Kraichnan also gave a memorable lecture at Marseille ’61 in which he compared
various approaches to the closure problem of turbulence, including the quasi-normal (or
zero-fourth-cumulants) approximation of Millionschikov and his own direct-interaction
approximation published two years earlier (Kraichnan 1959). Kraichnan simply stood
at the microphone and spoke for 40 minutes with extraordinary lucidity, and without
the help of a single visual aid, even chalk on blackboard! His lecture was followed by
a critique of “Kraichnan’s theory of turbulence” by Ian Proudman, a younger colleague
of Batchelor, who had published an extensive treatment of the quasi-normal theory
with W.H. (Bill) Reid some years earlier (Proudman & Reid 1954; see also Tatsumi
1957)2. Proudman’s critique was savage by any standard, his conclusion being: “I do
not hold out much hope for useful results from the theory [of Kraichnan]”. Kraichnan
was understandably perturbed by this unfavourable assessment.

In some respects, Proudman’s pessimism was justified. As mentioned above, the exper-
imental evidence did not support a k−3/2 energy spectrum, which was a key prediction
of the theory. However, in his response (published as an Appendix to his own paper)
Kraichnan pointed out a key ‘realisability’ property of his theory, namely that it guar-
anteed that the energy spectrum would remain positive for all time. He referred to the

2A new ‘cross-independence’ closure theory has recently been proposed by Tatsumi (2011), fifty-four
years after the same author’s first paper on the decay of isotropic turbulence, a remarkable span of
sustained investigation!
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paper by Ogura (presented at the IUGG-IUTAM Symposium that followed immediately
on Marseille ’61, and later published as Ogura 1963), which provided numerical evidence
that the quasi-normal closure (which incidentally leads to an enstrophy equation of the
form (4)) leads to the inadmissible development of a negative energy spectrum in the
energy-containing range of wave-numbers. In this respect therefore, the direct interac-
tion approximation was clearly superior (and this because it was an exact closure for
a physically realisable dynamical system, although unfortunately not the Navier-Stokes
system).

Kraichnan was subsequently able to modify his theory in such a way as to yield a k−5/3

spectrum (his Lagrangian-History Direct Interaction Approximation, or LHDIA). I spent
four months in Stan Corrsin’s group at Johns Hopkins University (September–December
1965), and I recall that we met for a weekly sandwich-lunch discussion session, to work
our way through this theory, but such was its complexity that we were not much the
wiser by the end of the term. The theory (Kraichnan 1965) takes account of the ‘sweep-
ing’ of small eddies by large eddies, in a mixed Lagrangian-Eulerian framework. In effect
this forces the energy transfer to be local in wave-number space, and this in turn leads
to the Kolmogorov spectrum E(k) = Cε2/3k−5/3 spectrum on dimensional grounds. The
reward for all the hard work is that the universal constant C is determined by the the-
ory; the downside is that, although k−5/3 appears fairly robust, the constant C varies by
about ±30% from one experimental context to another (Monin & Yaglom 1975, Chapter
8).

6. Helicity and the dynamo problem

One important aspect of homogeneous turbulence is the manner in which it acts upon a
convected scalar field (like temperature) or vector field (like magnetic field), in conjunc-
tion with the effects of molecular diffusion. The passive scalar problem is to be covered
in another section of this meeting, so I shall say no more here (except to recall that Philip
Saffman gave a remarkable lecture at Marseille ’61 on the counter-intuitive interaction of
molecular and turbulent diffusion of a scalar released from a fixed point in the turbulent
field – Saffman 1960). But I would like to comment on the vector field problem, because
many of the advances in our understanding of the dynamics of turbulence have come
from parallel considerations concerning MHD turbulence.

The emphasis in 1961 was on the increasing degradation of energy in going from large
to small scales, i.e.the production of chaos (the small-scale turbulence) from order (the
large-scale shearing or straining motion). A dramatic change came from an unexpected
quarter in the paper of Steenbeck, Krause & Rädler (1966)3. These authors recognised
that a large-scale well-ordered magnetic field could arise more or less spontaneously as a
result of coherent interaction of small-scale random motion and the small-scale random
field fluctuations to which this motion gives rise; in other words, order could arise out of

3This paper and subsequent papers by the same authors were published in German, and were not
very well known in the West until translated into English by Roberts & Stix (1971), and subsequent
publication of the book of Krause & Rädler (1980).
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chaos. I see this now as the most far-reaching and important discovery in the context of
turbulence of this last half-century; but I have to admit to a certain degree of prejudice,
because I came into this topic myself quite independently from a different direction three
years later. I had been intrigued by the paper of Woltjer (1958) who had shown that
under certain circumstances, the quantity

(5) HM =

∫
A.B dV

(where A is a vector potential for B) is an invariant in a perfectly conducting fluid. The
key was to recognise that the reason for this invariance is simply that the lines of force
are transported with the fluid, and their topology is therefore conserved. It was a small
step to realise that the same type of invariant must exist for the vorticity field in an
ideal fluid in which vortex lines are ‘frozen’ in the flow. This ‘inviscid invariant’ is the
helicity

(6) H =

∫
u. ω dV ,

since u is, in effect, a vector potential for ω . This new invariant (Moreau, 1961; Moffatt,
1969) is a consequence of Kelvin’s (1868) theorem on the conservation of circulation; but
it had lain undiscovered for close on 100 years since then!

It might be thought that helicity conservation, in conjunction with energy conservation,
should have a profound effect on the cascade process through the inertial range (where
viscous effects are negligible). Indeed if we think of this energy cascade in terms of vortex
tube stretching, then conservation of helicity does enter the picture, implying as it does,
that vortex tube topology is conserved. The effect is less obvious in spectral terms; the
fact that the helicity spectrum is not positive-definite means that one cannot argue for
a simple cascade of helicity from large to small scales: helicity can be created at large
scales at the expense of the creation of equal and opposite helicity at small scales!

The presence of nonzero helicity does however have a profound effect on the generation of
a large-scale magnetic field (the dynamo effect) as Steenbeck et al had predicted. Even
at low magnetic Reynolds number Rem, magnetic field will grow under the effect of
homogeneous turbulence provided only that the helicity is nonzero (providing an ‘alpha
effect’), and the space available for the growth of the field is large enough. This space
requirement is easily satisfied in planetary and astrophysical contexts! There is also
an enhanced diffusivity due to the turbulence (the ‘beta effect’), but the alpha effect
dominates on a large enough scale.

In his Marseille ’61 lecture, “Turbulence in compressible and electrically conductive me-
dia”, Kovasznay anticipated this turbulent diffusivity effect. He also emphasised the need
for a “clear, simple and meaningful experiment” in order “to obtain educated guesses
about relative importance of different approaches”. Such an experiment has been bril-
liantly conceived and realised by the French team working at Paris (ENS and Saclay),
Lyon and Cadarache (Moncheau et al. 2009) who have demonstrated dynamo action
in a ‘washing machine’ in which liquid sodium is stirred into strongly helical turbulent
motion by counter-rotating propellors. Both mean flow and turbulent dynamo effects are
present in this experiment, which has for the first time demonstrated that the process
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responsible for generation of the Earth’s magnetic field can indeed be simulated in the
laboratory.

7. Two-dimensional turbulence

Two-dimensional turbulence was briefly discussed by Batchelor in the closing sections of
his 1953 monograph, where he pointed out an important consequence of (inviscid) en-
strophy conservation: the inevitability of an inverse energy cascade (although he didn’t
use this terminology). I believe his interest in this problem was rekindled through dis-
cussions with Kraichnan at Marseille ’61. At any rate, soon after, he put his research
student Roger Bray to work on a numerical simulation of 2D turbulence (Bray, Cam-
bridge PhD, 1966). More or less simultaneously, Kraichnan developed his ideas on the
subject (Kraichnan 1967), and Batchelor (1969) gave his version of the enstrophy cas-
cade, with reference to Bray’s numerical results. The inverse energy cascade can also
be regarded as a manifestation of the emergence of ‘order out of chaos’ as later clari-
fied by McWilliams (1984) in his paper “The emergence of isolated coherent vortices in
turbulent flow”. The importance of nearly 2D turbulence in the context of atmospheric
dynamics has led to intense activity in this field. Density stratification, strong rotation
with associated Coriolis effects, and strong ‘applied’ magnetic field can all (separately
or possibly in conjunction) lead to ‘two-dimensionalisation’ of a field of turbulence, al-
though the residual effect of weak three-dimensionality can remain of crucial interest.
Such turbulence is strongly anisotropic, but nevertheless can remain homogeneous; it is
a subject of continuing research interest in which real progress may be anticipated.

7. Rapid distortion theory

Homogeneous turbulence that is subjected to uniform strain, whether rotational or ir-
rotational, remains homogeneous, although increasingly anisotropic as the effect of the
strain progresses. If this straining is sufficiently rapid, then its effect on the turbulence
may be treated in at least a first approximation by a linearised analysis in which nonlin-
ear interaction of the turbulence with itself is neglected. This is what is known as rapid
distortion theory (or RDT). Like so many aspects of turbulence, RDT goes back to a
paper of G.I.Taylor (1935) who analysed the damping of turbulent fluctuations in flow
through a contraction in a wind tunnel.

In his 1956 book “The structure of turbulent shear flow”, Alan Townsend had used
a version of RDT to determine the structure of what he described as the ‘big eddies’
in free turbulent flows. He assumed that only the irrotational part of the strain was
relevant and allowed this strain to progress only until a degree of anisotropy consistent
with experimental measurements was attained. In his Marseille ’61 lecture on “Free
turbulent flows”, Hans Liepmann made passing reference to this approach, but regarded
the resulting models of eddy structure as but “a groping for an eventual representation
of a stochastic rotational field”.
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I could not understand Townsend’s reason for focussing on just the irrotational ingredient
of the strain field, and in a later investigation I found that the effect of plane shear on
turbulence was indeed quite different (Moffatt 1967): as is now well recognised, plane
shearing is the mechanism by which streamwise vortices become prominent in the flow.
Steve Kline discovered the related ‘streaks’ in a turbulent boundary layer at about the
same time. ‘Coherent vortices’ became a growth industry during the 1970s, a period
that marked a return towards mechanistic approaches based on vortex interactions in
x-space, in parallel with the purely statistical approach that found its most natural
expression in k-space.

In the second edition of his book (1976, §3.12 et seq.), Townsend adopted the plane
shear (as opposed to the irrotational strain) description in his approach to the energy-
containing eddies, and concluded: “Generally, the measurements of the behaviour of
turbulent fluid under either irrotational distortion or plane shearing flow show that
the larger eddies, possessing most but not all of the energy, are persistent and coherent
structures which interact with the mean flow in the ‘rapid-distortion’ manner, and which
lose energy and interact with the smaller eddies by processes that can be modelled by
an effective viscosity”. The fact that linearised RDT is more successful than we have
any right to expect provides one ray of light in the continuing search for a complete
theoretical description of turbulence.

Additional effects such as uniform density stratification, Coriolis forces due to rotation,
and Lorentz forces due to an applied uniform magnetic field can all act in conjunction
with uniform distortion to induce anisotropy in a homogeneous field of turbulence, with-
out inducing inhomogeneity. Much work in this area has been described in the book
“Homogeneous Turbulence Dynamics” by Sagaut & Cambon (2008), which testifies to
the continuing vitality of RDT, particularly in geo- and astro-physical contexts.

8. The active scalar field problem

If weak variations of a scalar contaminant are present in a field of turbulence, then this
scalar field is subject to convection and molecular diffusion, but does not react back
dynamically upon the convecting velocity field. This constitutes the ‘passive scalar field
problem’ to which a later session of this meeting is devoted.

There are many circumstances however in which the contaminant may react back upon
the velocity field. For example, if the ‘contaminant’ is temperature θ(x, t), then buoyancy
forces come into play, and the velocity field u(x, t) is itself influenced to a greater or
lesser extent by the θ-field.

In an extreme situation, we may suppose that u is actually ‘driven’ by the θ-field. This
was the situation considered by Batchelor, Canuto & Chasnov (1992), in their paper
“Homogeneous buoyancy-generated turbulence” (Batchelor’s last significant contribution
to turbulence). The non-linearity u.∇θ associated with convection of θ is now just as
important as the nonlinear contribution u.∇u to the Navier-Stokes equations.
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If we consider turbulence in a rotating system at small Rossby number (i.e. dominant
Coriolis effect, as in the Earth’s liquid core) then the nonlinear acceleration u.∇u is
negligible, and we have a form of turbulence driven by buoyancy forces in which the
sole nonlinearity is represented by the convective term u.∇θ in the advection diffusion
equation, a state of affairs that may be described as ‘geostrophic turbulence’. If a lin-
earised Lorentz force is also present, then we have ’magnetostrophic turbulence’ which
again (starting from a very weak field) is potentially capable of dynamo action (Moffatt
2007). If the statistics of the θ-distribution are assumed known, then the statistics of the
velocity and magnetic fields can be deduced by linearised analysis similar to RDT. The
essential problem that remains is to determine the statistical evolution of the θ-field,
given the source of temperature variations, a problem whose regularity properties have
recently been investigated by Friedlander (2011). This type of turbulence problem is
far removed from conventional laboratory turbulence; but it contains the same essen-
tial ingredients: non-linear spreading of energy in k-space, and dissipation by molecular
diffusivity at the smallest scales. Such problems continue to present a challenge for the
future.

8. Conclusion

The Marseille 1961 Turbulence Colloquium was remarkably wide-ranging in the issues
that it explored, and the discussions at the Colloquium sowed the seeds for a number
of important later research developments. Computers were still at a relatively primitive
stage of development, but even then the numerical work of Ogura(1963) that demon-
strated a fundamental flaw of the quasi-normal approximation gave a hint of the central
role that computation was to play in the future. The search for a fundamental theory of
turbulence was very much alive then; it is still alive today, though perhaps in a slightly
battered state, since so many approaches have been tried and discarded along the way.
The fact that order can emerge from chaos in MHD turbulence (through the spontaneous
growth of a large-scale magnetic field) is, in my view, one of the most striking discoveries
of the last 50 years, as is the identification of concentrated vortices as perhaps the key
element of turbulent flow. The interaction of these vortices remains a pressing problem,
both for theory and numerics, and the underlying problem of regularity of the Navier-
Stokes equations (otherwise known as the finite-time singularity problem) remains a
central challenge for mathematically oriented fluid dynamicists, in essential partnership
with experts in computing. Let’s hope the next 50 years will reveal the answer to this
problem, one way or another!
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