Highlights of Fifty Years of Turbulent Boundary Layer Research
Turbulence Colloquium Marseille 2011

James Wallace
Landmarks of Turbulent Boundary Layer Research

Pre – 1961
Development of Hot-wire anemometry & measurement of statistical properties.

1960s
Visualization identifying organized (coherent) structures related to turbulence production.

1970s
Conditional sampling and averaging methods (quadrant analysis, VITA, etc.) developed to quantify properties and effects of organized structures.

1980s
First DNS of turbulent channel and boundary layer flows providing full spatial field properties and access to 3D structural information. First experimental measurements of velocity gradient tensor based properties: vorticity, dissipation rate, etc.

1990s
Development of better methods to identify vortices. Implementation of planar PIV providing new insights to flow structure. Development of field sites for experiments in the ASL at very high Reynolds numbers. Development of high Reynolds number laboratory facilities.

2000s
DNS at significantly higher Reynolds numbers and supersonic Mach numbers. Use of stereo-, tomographic- & holographic-PIV to provide additional insight about flow structure.

2010s
DNS for much higher Reynolds numbers and hypersonic flow ($\text{Re}_\theta \sim 11,000$ & Mach ~ 12).
Pre - 1961

1st NBS hot-wire apparatus

Dryden & Kuethe (1929) NACA TR 320

"horseshoe" structure of wall bounded turbulence

Theodorsen (1952) 2nd Midwestern. Conf. on Fl. Mech.
Figure 1. The law of the wall.

\[\frac{u}{u_r} = \frac{1}{\kappa} \ln \left(\frac{y u_r}{\nu} \right) + \epsilon \]

Figure 2. The law of the wake.

\[\frac{u}{u_r} = f \left(\frac{y u_r}{\nu} \right) + \frac{\Pi}{\kappa} \Theta \left(\frac{y}{\delta} \right) \]

Coles (1956) JFM 1
Corrsin & Kistler (1954) NACA TN 3133

Klebanoff (1955) NACA Rep. 1247
Figure 7. Space-time isocorrelation surfaces with optimum delay in the boundary layer on a flat plate; $\delta = 33$ mm, $Re = 27900$, $y'/\delta = 0.01$

Grant (1958) JFM 4

Favre, Gaviglio & Dumas (1958) JFM 3

Figure 21. The nine correlations in the boundary layer.

Figure 6. Longitudinal space-time correlation of the wall pressure displayed in three dimensions using the data of figure 5.

Willmarth & Wooldridge (1962) JFM 14

Fig. 11. Streamlines of the large eddy structure in a plane normal to the mean flow.

Bakewell & Lumley (1967) Phys. Fl. 10
Hydrogen Bubbles

Kline, Reynolds, Schraub & Runstadler (1967) JFM 30

View Multi-media Fluid Mechanics videos 4192, 4497 & 4766 in the Media Library

Corino & Brodkey (1969) JFM 37

BL Interface Bulges

Kovasznay, Kibens & Blackwelder (1970) JFM 41

Blackwelder & Kovasznay (1972) Phys. Fl. 15
Wallace, Eckelmann & Brodkey (1972) JFM 54
Brodkey, Wallace & Eckelmann (1974) JFM 63
Wallace & Brodkey (1977) Phys. Fl. 20

Willmarth & Lu (1972) JFM 55
Lu & Willmarth (1973) JFM 60
Patterns ~
1100 Δx^+, 1.6δ

Emmerling (1973) MPI für Strömungsforschung Bericht No. 9
Dinkelacker, Hessel, Meier & Schewe (1977) Phys. Fl. 20
VITA Conditional Sampling

Blackwelder & Kaplan (1976) JFM 76

Chen & Blackwelder (1978) JFM 89

Antonia, Rajagopalan, Subramanian & Chambers (1977) JFM 121

Kim & Moin (1986) JFM 162

DNS $Re = 180$
Figure 14. Root-mean-square vorticity fluctuations normalized by the mean shear. (a) In global coordinates: $\omega_u v_{u}^2$; $\omega_v v_{v}^2$; $\omega_w v_{w}^2$; (b) in wall coordinates: ω_x, ω_y from Kastrinakis & Eckelmann (1983), ω_z at the wall from Kreplin & Eckelmann (1979).

Figure 12. Measured r.m.s. fluctuating vorticity components normalized with inner scaling u_* and compared to other measured and simulated values. Symbols given in table 2.

Figure 25. Flow structures visualized by fluid markers: (a) particles are generated along a line parallel to the z-axis at $y^* \approx 10$ (oblique top view); (b) particles are initially distributed uniformly on a plane parallel to the wall at $y^* \approx 10$ (top view); (c) particles are generated along a line parallel to the y-axis (side view).

Kim, Moin & Moser (1987) JFM 177

Spalart (1988) JFM 187

Figure 19. Vorticity contours, $R_e = 1410$. (a) Streamwise plane; (b) spanwise plane; (c) downstream plane, at 45°; (d) upstream plane, at 45°. Contour levels: $[\omega] (du/u^*)^\beta = 1, 2, 3, \ldots$

Figure 10. Measured turbulent kinetic energy production and dissipation rates normalized with inner scaling u_* and v and compared to other measured and simulated values. Symbols given in Table 2 except for $*$, dissipation neglecting cross-product velocity gradient correlations and Φ, dissipation assuming isotropy.

Balint, Vukoslavčević & Wallace (1991) JFM 228
Spalart (1988) JFM 187

Figure 19. Measured one-dimensional fluctuating vorticity component spectra at $y^+ = 18$ compared to direct numerical simulations of P. R. Spalart (1990, private communication) at $y^+ = 15$.

Figure 21. Measured terms in equation (7) for the transport of total enstrophy normalized with inner scaling u_+ and v_+. Closed symbols, present measurements; open symbols, Balint et al. (1990): (▼, □), advection (term (7)I); (●, ○), rotation and stretching/compression (term (7)II); (▲, △), viscous diffusion (term (7)III); (■, □), viscous dissipation (term (7)IV).

\[
\begin{align*}
U_j \frac{\partial}{\partial x_j} \left(\frac{1}{2 \Omega_i \Omega_j} \right) &= \Omega_i \Omega_j \frac{\partial U_j}{\partial x_j} + \nu \frac{\partial^2 \left(\frac{1}{2 \Omega_i \Omega_j} \right)}{\partial x_j \partial x_j} - \nu' \frac{\partial \left(\frac{1}{2 \Omega_j \Omega_j} \right)}{\partial x_j}, \\
I & \text{: the rate of advection of total enstrophy;} \\
II & \text{: the rate of rotation and stretching/compression of total enstrophy by the velocity gradient field;} \\
III & \text{: the rate of viscous diffusion of total enstrophy;} \text{ and} \\
IV & \text{: the rate of viscous dissipation of total enstrophy.}
\end{align*}
\]

Antonia, Bisset & Browne (1990) JFM 213
Bernard & Handler (1990) JFM 220

Bernard, Handler & Thomas (1993) JFM 253
FIGURE 20. (a) Streamwise cross-section of a supersonic boundary layer with $Re = 20000$, obtained using Rayleigh scattering; Smith (1989). (b) Streamwise cross-section of a subsonic boundary layer with $Re = 4000$, obtained using oil droplet visualization; Fack (1977). (c) Streamwise cross-section of a computer-generated subsonic boundary layer with $Re = 670$, showing iso-vorticity contours. The flow is a direct Navier–Stokes turbulence simulation; Robinson (1989).
Figure 1b Conceptual model of the kinematical relationships between (1) ejection/sweep motions and quasi-streamwise vortices in the near-wall region and (2) ejection/sweep motions and arch-shaped vortical structures in the outer region. Model proposed for low-Reynolds-number boundary layers (from Robinson 1990).

Figure 4 Vorticity lines traced from either side of a quasi-streamwise vortex in a boundary layer, showing upright- and inverted-hairpin shapes.
The exact Reynolds stress transport equation can be written

\[D_t \overline{u_i u_j} = \mu_{ij} + P_{ij} - \frac{u_i u_j}{k} e - \delta_{ij} \overline{u_k u_k} - \frac{2}{3} \rho \delta_{ij} \overline{\partial_k u_k} + \nu \nabla^2 \overline{u_i u_j} \]

where

\[P_{ij} = -\overline{u_i u_k \partial_j U_j} - \partial_j \overline{u_k u_k} \partial_j U_j \]

is the rate of turbulence production by mean velocity gradients,

\[\mu_{ij} = -\frac{1}{\rho} \overline{u_i \partial_j p} - \frac{1}{\rho} \overline{u_j \partial_i p} + \frac{2}{3} \rho \delta_{ij} \overline{\partial_k u_k p} - \epsilon_{ij} \overline{u_i u_j} \]

is tensorially consistent near wall 2nd order closure model without ad hoc damping functions

\[\left(\begin{array}{c}
\frac{\partial u_i}{\partial x_j} \\
\frac{\partial u_j}{\partial x_i}
\end{array} \right) = \left(\begin{array}{c}
\frac{\partial u_1}{\partial x_1} + \frac{\partial u_2}{\partial x_2} + \frac{\partial u_3}{\partial x_3} \\
\frac{\partial u_2}{\partial x_1} + \frac{\partial u_1}{\partial x_2} + \frac{\partial u_3}{\partial x_2} \\
\frac{\partial u_3}{\partial x_1} + \frac{\partial u_1}{\partial x_3} + \frac{\partial u_2}{\partial x_3}
\end{array} \right) = \left(\begin{array}{c}
0 \\
0 \\
0
\end{array} \right) \]
Choi, Moin & Kim (1993) JFM

Figure 1. (a) Three-dimensional view of detection planes (b) schematic diagrams of out-of-phase v-control.

Figure 10. Production (P_k) and dissipation (ϵ_k) of the turbulence kinetic energy: ---, no control; ---, v-control; ---, w-control. (a) In global coordinates; (b) in wall coordinates. In coordinates, values are non-dimensionalized by the actual wall-shear velocity.

Figure 14. Root-mean square vorticity fluctuations normalized by the wall-shear velocity in global coordinates: ---, no control; ---, v-control; ---, w-control. Note that $y/\delta = -1$ corresponds to the lower location.
Saddoughi & Veeravalli (1994) JFM 268

Figure 3. Trajectory analysis technique (TRAT) based on quadrant-sequences on the \((u,v)\)-plane. \(-\cdots-\), \(H = 1.07\); \(--\cdots--\), \(h = 0.25\).

Figure 13. Predictions of near-wall temperature fluctuations associated with the key flow patterns using the autoregressive (AR) model: ---, measurements; \(---\cdots\), AR model prediction. (a) Q2-Q1-Q4; (b) Q2-Q3-Q4; (c) Q4-Q1-Q2; (d) Q4-Q3-Q2; (e) Q3-Q2-Q3.

Nagano & Tagawa (1995) JFM 305

Folz & Wallace (2010) Physica D 239
Jeong, Hussain, Schoppa & Kim (1997) JFM 332

Figure 2. Top view of the isosurfaces of $\lambda_2 = -0.03$ in the range $0 < y^+ < 60$.

Figure 13. Coherent Reynolds stresses at $x = 0$ in E1: (a) $- (u - U) (v)$ for SP, contour levels = (0.3, -0.534, 1.94); (b) $- (v) (w)$ for SP, contour levels = (0.2, -0.868, 1.22); (c) $- (u - U) (w)$ for SP, contour levels = (0.7, -1.34, 4.23); (d) $- (u - U) (w)$ for SN. Relative locations of Q1, Q2, Q3 and Q4 events with respect to the CS center are shown in (a).

Figure 14. (a) Vortex lines traced outside CS

Schoppa & Hussain (2002) JFM 453

Figure 10. Conceptual model of an array of CS and their spatial relationship with experimentally observed events discussed in the text: (a) top view; (b) side view; (c) structures at cross-section F/G in (a); (d) expanded views of structures C and D in (a,b), showing the relative locations of Q1, Q2, Q3, Q4, E and H. A schematic demonstrating the counteracting precession of SN in the (x, z)-plane due to background shear is shown in (e). The arrows in (b) denote the sections of figure 9(a-e).
Honkan & Andreopolous (1997) JFM 350

Ong & Wallace (1998) JFM 367

\[\bar{\Omega}_x \bar{\Omega}_y = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Omega_x \Omega_y P(\Omega_x, \Omega_y) d\Omega_x d\Omega_y \]
Barenblatt, Chorin & Prostokishin (2000) JFM 410

\[
\eta = \frac{u_y}{v}
\]

\[
\phi = \frac{u}{u_*} = \left(\frac{1}{\sqrt{3}} \ln Re + \frac{5}{2} \right) \eta^{3/2 \ln Re}
\]

\[
\psi = \frac{1}{\alpha} \ln \left(\frac{2 \alpha \phi}{\sqrt{3} + 5 \alpha} \right) = \ln \eta, \quad \alpha = \frac{3}{2 \ln Re}
\]

Figure 16. (a) The experiments of: *, Erm & Joubert (1991); [], Smith (1994); <, Krogstad & Antonia (1998); and >, Petrie et al. (1990). (b) ▽, The data of Winter & Gaudet (1973). (c) **, The data of Bruns et al. (1973) and Fernholz et al. (1995). (d) The data of all experiments except those by Naguib (1992) and Nagib & Hites (1995), Bruns et al. (1992) and Fernholz et al. (1995): O, Collins et al. (1978); ▽, Petrie et al. (1990); ±, Erm (1988); O, Putell et al. (1981); *, Djenidi & Antonia (1993); ×, Warnack (1994); <, Krogstad & Antonia (1998); ▽, Winter & Gaudet (1973). All the data in (a–d) collapse on the bisectrix of the first quadrant in accordance with the universal form (14) of the scaling law (5). (e) (i) The data of Naguib (1992) and Nagib & Hites (1995) show a systematic deviation from the bisectrix of the first quadrant. (ii) The data of Krogstad & Antonia (1998) related to rough walls: the experimental points lie much lower than bisectrix. For the evaluation of \(\psi \) the value \(\alpha = 3/2 \ln Re \) was taken. (f) The data of Hancock & Bradshaw (1989) show the parallel shift from the bisectrix of the same order as in the experiments by Nagib & Hites: *, Nagib & Hites; *, Hancock & Bradshaw, \(u'/U = 0.0003, 0.024, 0.026 \); ×, Hancock & Bradshaw, \(u'/U = 0.040, 0.041 \); O, Hancock & Bradshaw, \(u'/U = 0.058 \).
Re₀ = 1577
Mach = 2.5

Guarini, Moser, Shariff & Wray (2000) JFM 414

Figure 1. Schematic of PIV photographic recording system. The streamwise–wall-normal plane of a zero-pressure-gradient boundary layer is illuminated by a vertical laser light sheet and imaged by a side-viewing 4 in. x 5 in photographic camera.

Adrian, Meinhart & Tompkins (2000) JFM 422

Figure 7. Root-mean-square streamwise velocity scaled and plotted with mean variables. • $Re = 590$; ▲, $Re = 340$; ○, Rouse et al. (1994); ●, Kawai & Abe (1989); $Re = 2350$; ---, Morkovin (1958); $Re = 1410$.

Figure 11. Near-wall realization at $Re = 930$ showing four hairpin vortex signatures aligned in the streamwise direction. Instantaneous velocity vectors are viewed in a frame-of-reference moving at $U_1 = 0.8U_e$, and scaled with mean variables. Vortex heads and inclined shear layers are indicated schematically, along with the elements triggering a VITA event.

Adrian, Meinhart & Tompkins (2000) JFM 422

Figure 14. Realization of the $Re = 930$ boundary layer showing hairpin vortex heads along the boundaries separating regions of uniform-momentum fluid. The black lines separate the flow field into zones, labelled I, II, III, in which the streamwise momentum is nearly uniform: (a) instantaneous velocity vector map viewed in a convecting frame of reference $U_1 = 0.8U_e$, and scaled with mean variables, (b) contours of constant m-momentum.

Figure 10. (a) Schematic of a hairpin vortex normal to the wall and the induced motion. (b) Projection of the hairpin vortex on the streamwise–wall-normal plane. The red square indicates the position of the plane, and it intersects Re concentrated on the bottom.

Hairpin “packet”
\[A_{ij} = \frac{\partial U_i}{\partial x_j} \]
\[\dot{\lambda}^3 + P \dot{\lambda}^2 + Q \dot{\lambda} + R = 0, \]
\[P = -A_{ii}, \]
\[Q = \frac{1}{2} P^2 - \frac{1}{3} A_{ik} A_{ik}, \]
\[R = -\frac{1}{3} P^3 + \frac{1}{2} A_{ik} A_{kn} A_{nk}. \]
\[D = \frac{\dot{\lambda}^2}{4} R^2 + Q^3. \]

Figure 5. Top view of the computational domain showing regions of positive discriminant and their spatial association with Reynolds stress events \((u'v')\).

Chacin & Cantwell (2000) JFM 404

Figure 1. Summary of three-dimensional, incompressible flow patterns (from Soria et al. 1994).

Figure 19. Joint probability density function of the \(Q\) and \(R\) invariants of velocity gradient tensor at \(z^+ = 125\).

Andreopolous & Honkan (2001) JFM 439

Figure 3. Time-averaged Reynolds-stress \((u'v')\) generating events associated with the four incompressible flow patterns. Data taken from the entire boundary layer.
Carlier & Stanislas (2005) JFM 535

Table 6. Number of eddy structures detected.

<table>
<thead>
<tr>
<th>R_0</th>
<th>V_∞</th>
<th>V_\star</th>
<th>V_\star</th>
<th>V_\star</th>
<th>V_\star</th>
<th>V_\star</th>
<th>V_\star</th>
</tr>
</thead>
<tbody>
<tr>
<td>7500</td>
<td>3613</td>
<td>1720</td>
<td>2366</td>
<td>2193</td>
<td>10579</td>
<td>10571</td>
<td>809</td>
</tr>
<tr>
<td>10500</td>
<td>--</td>
<td>--</td>
<td>2096</td>
<td>2123</td>
<td>--</td>
<td>--</td>
<td>888</td>
</tr>
<tr>
<td>13500</td>
<td>--</td>
<td>--</td>
<td>2423</td>
<td>2408</td>
<td>--</td>
<td>--</td>
<td>852</td>
</tr>
<tr>
<td>19000</td>
<td>--</td>
<td>--</td>
<td>7303</td>
<td>2342</td>
<td>--</td>
<td>--</td>
<td>756</td>
</tr>
</tbody>
</table>

Figure 22. Examples of accepted eddy structures in the (e_∞, e_r)-plane at $R_0 = 7500$.

Figure 25. Averaged eddy structures in the (e_∞, e_r) normal to the wall plane at $R_0 = 7500$, 7500, 10500 and 125 (clockwise from the top left-hand side). The grey scale out-of-plane component.

Figure 10: Orientations of the various planes used in the two series of PIV measurements:
1. (e_∞, e_r); 2. (e_∞, e_\perp); 3. (e_\perp, e_r); 4. (e_\perp, e_\perp); 5. (e_∞, e_\perp)

Figure 30. Mean vorticity profiles of eddy structures: $\nabla \times (e_\infty, e_r)$-plane and $R_0 = 7500$; $e_\infty = 7500$; (e_∞, e_\perp)-plane and $R_0 = 10500$; (e_\perp, e_\perp)-plane and $R_0 = 13500$; (e_\perp, e_r)-plane and $R_0 = 19000$; r.m.s. spanwise vorticity; Van Driest profile.

Figure 34. Probability map of the location of ejection compared to positive eddy structure and positive eddy structure compared to ejection at $y^+ = 50$ and $R_0 = 7500$ in the (e_∞, e_r)-plane.
(a) Fixed point positive eddy structure; moving point, ejection. (b) Fixed point, ejection; moving point, positive eddy structure.
Hutchins & Marusic (2007) JFM 579

VLSMs

Del Alamo, Jimenez, Zandonade & Moser (2004) JFM 500
Re$_\theta$ \sim 2600
Mach \sim 3

Re$_\theta$ $=$ 950 - 1350
Mach = 2

Pirozzoli, Bernadini & Grasso (2008) JFM 613
(2010) JFM 648a
Mathis, Hutchins & Marusic (2009) JFM 628

Figure 5. Example of large-scale decomposition on the fluctuating u velocity signal: (a) inner-peak location $z^+=15$; (b) outer-peak location $z/\delta=0.08$; (i) raw signals, with 71% of correlation; (ii) large-scale components, with 72% of correlation. Dashed vertical lines show region of negative large-scale u'_L fluctuation.

Figure 13. Comparison of correlation coefficient between the large-scale component and the filtered envelope of the small-scale component: (a) R plotted in inner-scale z^+ unit; (b) R plotted in outer-scale z/δ unit.

Figure 8. Wall-normal evolution of the degree of amplitude modulation: (a) pre-multiplied energy spectra of the streamwise velocity fluctuation $i_s\phi_u/U^+$; (i) correlation coefficient $R(i_s')$ between the large-scale component and the filtered envelope of the small-scale component; (c) mean velocity profile; $Re_\tau=7300$.
Wu & Moin (2009) JFM 630

Figure 17. Zoomed view of the highlighted near-wall small structure in figure 16 overlaid with local instantaneous vortex lines. Iso-surfaces are coloured using γ^*.

Wu (2010) JFM 664

Figure 16. Growth parameters of the present boundary layer with free-stream passing wakes.

- Dotted: $10^{-3} Re/\lambda$; dashed: $10^{-2} \tau / \lambda$; solid: R^*; dash-dotted: $10^{-2} Re$;
- diamond: solutions; diamond, Pettit, Klebanoff & Buckley (1981); circle, Adrian et al. (90); square, DeGraaf & Eaton (2000).

Figure 15. Zoomed view of the highlighted Kelvin-Helmholtz structure in figure 14 overlaid with local instantaneous vortex lines. (a) $\theta = 0$ and (b) $\theta = 0.05$.

Expansion of structures resolved using Q and temperature over $1550 < Re < 1850$. Iso-surfaces are coloured as of γ^*. (a) $\theta = 0$ and (b) $\theta = 0.05$.

Wu & Moin (2009) JFM 630

Wu (2010) JFM 664
Digital Holography

Sheng, Malkiel & Katz (2009) JFM 633

\[\text{Re}_T = 1470 \]

Elsinga, Adrian, Oudheusden & Scarano (2010) JFM 644

\[\text{Re}_\theta = 34,000 \]

Mach = 2

Tomographic PIV

Figure 1. Test facility and DHM set-up

Figure 2. (a) Instantaneous vortex distribution detected by the \(Q \) criterion (green) and low-speed zones (blue, \(u < 0.8U_c \)) for \(0.15 < y/\delta < 0.47 \). (b) A contour plot of the \(u \) component of velocity at \(y/\delta = 0.2 \).

Figure 7. Conditionally averaged three-dimensional flow structure and wall stress based on a local stress minima, \(\tau_z < K\Delta(\tau_z) \), for \(x = z = 0 \). (a) Release of \(\tau_z \) and vortex lines. (b) Conditionally averaged near-wall vortex lines and distribution of \(\tau_{z'}(\Delta x, 0, \Delta z)/(\tau_z) \). Insert: \(x-\gamma \) projection of the vortex lines.

Figure 6. Conditional eddy (a, b) given a negative spanwise swirling event at \(y/\delta = 0.35 \) visualized using the \(Q \) vortex detection criterion (green) and low velocity region (blue, \(\bar{u} < \bar{u}_c \)) with corresponding velocity vector plot in the \(x, y \) plane at \(r_z = 0 \) and \(x, z \) cross-sections at \(y/\delta = 0.2 \) (c, d). The velocity vectors are relative to the eddy convective velocity \(\bar{u}' \) at \(y/\delta = 0.35 \) indicated in the upper left corner of each plot. The dashed lines indicate \(\bar{u}_c = 0 \).

$Re_\theta \sim 2500$

$Re_\theta = 1400 & 4300$

Schlatter, Li, Brethouwer, Johansson & Henningson (2009)
Int. Jour. Heat & Fluid Flow 31

Schlatter & Örlü (2010) JFM 659
Dennis & Nickels (2011) JFM 673
Stereo PIV
Reₜ ~ 4700

Jimenez, Hoyas, Simens and Mizuno (2010) JFM 657

Figure 3. (a) Typical sections of ω in the boundary layer, showing instantaneous potential flow deep into the reverse region. Re_θ ~ 300–900. (b) Probability density functions of the vorticity magnitude in section 30.53, showing the development away from the wall of the transitional data at u'/σ = 0.4; --, 0.55; ---, 0.65; -----, 1.2. The dashed vertical line is the limit used to define transitional flow, slightly larger than a single histogram bin. (c) Interception factor, ζ. BLS in the present simulation; ..., BL3; ..., BL3.2; ..., from experimental velocity measurements at Re_θ ~ 8000 (Konoshima, Khmelev & Blackwelder 1970); ..., from temperature measurements at Re_θ = 1100–4000 (Murta, Tao & Buddhaw 1982).

Figure 11. Iso-surfaces of the instantaneous velocity gradient tensor of the present simulation on Top view (a) Perspective view. The magenta surface is from left to right and the wall-normal direction of the box are approximately 18 × 9 times the boundary-layer thickness at the centre of the box, spanning Re_θ = 1600–3000. The thickness is defined by the distance to the wall, from y^+ = 0.3–0.4 for the deepest blue to y^+ = 0.5 for the brightest red.

Figure 9. Instantaneous sections of the fluctuations in the boundary layer: u (a, b), v (c, d), w (e, f), p (g, h) (a, c, e, g) The x–y sections, in Re_θ = 1670–2000, and (b, d, f, h) the z–y sections at Re_θ = 1670. All the fluctuations are normalized with the x-dependent friction velocity, and the coordinates are normalized with δ_99 at Re_θ = 1670. In all the sections the dark areas are below −0.5 wall units, and the lighter ones above +0.5.

Figure 16. (Colour online) Conditionally averaged swirling

Figure 6. (Colour online) Visualisation of vortices with high- and low-speed structures. Black iso-surface: $|\lambda_1| = 0.12|\lambda_\text{max}$. Blue iso-surface: $\lambda_\text{min} = 0.7$. Red iso-surface: $\lambda_\text{min} = 0.7$.
Guala, Metzger & McKeon (2011) JFM 666

Re_θ = 1515 – 11,356
Mach = 0.3 – 11.9

Duan, Beekman & Martin (2011) JFM 672
Fig. 2: Examples of (a) an individual turbulent spot at \(Re_y = 200 \), (b) merged turbulent spots at \(Re_y = 500 \) and (c) developed turbulence at \(Re_y = 1840 \) in the boundary layer near the wall marked by contours of enstrophy. The yellow dashed lines demark the parts of the flow in which data was used to calculate the statistics.
Summary

- There has been remarkable progress in turbulent boundary layer research in the past 50 years, particularly in understanding the structural organization of the flow. Consensus exists that vortices drive momentum transport but not about the exact form of the vortices or how they are created and sustained.

- This progress has been fueled by developments in experimental instrumentation (multi-sensor hot-wire anemometry and PIV) but most of all with the advent of DNS in the 1980s and its subsequent advances.

- Further progress has been made by the development of high Reynolds number laboratory facilities and the use of field sites to study the very high Reynolds number atmospheric surface layer under near neutral stability conditions.

- Challenges for the future:
 - Incorporating the knowledge of the structure of turbulent boundary layers into models, including RANS and subgrid scale LES models.
 - Further extending the knowledge gained for zero pressure gradient, smooth wall boundary layers to the complexities of accelerating and decelerating boundary layers and flows with rough walls.
 - Continuing to develop and implement methods to control turbulent boundary layers that occur in real engineering applications.
Highlights of Fifty Years of Turbulent Boundary Layer Research

Pre – 1961

SLIDE 1
Title

SLIDE 2
Summary of periods and highlights by decades

SLIDE 3
Early hot-wire measurements. Some done in Delft by Burgers and co-workers even earlier in the 20s.

SLIDE 4
Similarity laws for “overlap” and “wake” regions.

Millikan: “Law of the wall”

Coles: “Law of the wake”

SLIDE 5
Townsend: RMS distributions of velocity fluctuations and estimate of the TKE balance from hot-wire measurements.

Corrsin & Kistler: “Superlayer” properties and intermittency function in TBL

Klebanoff: TKE production and dissipation rate estimates. All the determinations of the dissipation rate from this period were crudely estimated as the residue of the other terms.

SLIDE 6
Favre et al: Space-time isocorrelation contours with optimum time delay. Probes were separated in both the streamwise and wall normal directions. Fixed probe at about y+ = 40. Note high aspect ratio of correlation in x-y plane compared to y-z plane. Note also that a small correlation remains all the way out to y = 0.3δ.

Grant: Spatial correlation tensor components at several locations of the fixed probe in the boundary layer. He inferred structure from these correlations.

SLIDE 7
Willmarth & Wooldridge: Wall pressure space-time correlation function with two probes of varying separation in the streamwise direction. One horizontal axis is time and the other is downstream distance. The vertical axis is the correlation level. The ridge flowing out to the lower right of the figure shows the cumulative effect of
eddies of different scale on the wall pressure with increasing time and distance. The decay in correlation is interpreted as the increasing loss of the effect of smaller eddies.

Bakewell & Lumley: Streamlines in the cross-stream plane of a pipe flow of glycerin as revealed by proper orthogonal decomposition of hot-film data and their suggested eddy structure.

SLIDE 8
Visual experiments that excited the research community about organized coherent motions in wall bounded flows.

Kline et al.: Low-speed streaks revealed by hydrogen bubbles and their “bursting”.

Corino & Brodkey: “Ejection” and “sweep” coherent events revealed by particle motion near the wall in a pipe flow viewed in a moving frame of reference.

SLIDE 9
Kovasznay et al.: Intermittency function, point averages of “fronts” and “backs” of potential flow bulges and a sketch of them.

SLIDE 10
Wallace et al.: Quadrant analysis of the Reynolds shear stress in a channel flow. Plot of covariance integrand, uv dudv, by quadrant and as function of distance from wall.

Willmarth and Lu: Quadrant analysis for boundary layer with “hole” of constant Re Stress to accentuate large amplitude events.

SLIDE 11
Several hundred small holes covered with a mirrored silicone rubber foil. Using interferometry and a high speed movie camera, the instantaneous fringes on each element were used to determine local wall pressure after calibration.

Figure shows pressure pulses being convected downstream over one row of transducers. Patterns persist for more than 1100 viscous length scales (1½ the boundary layer thickness). Convection velocities are about ¾ of the freestream velocity.

SLIDE 12
Blackwelder and Kaplan: Intention was to detect turbulent “bursts” using Variable Integral Time Averages (VITA) of conditionally sampled data. Condition was that the local square of the streamwise velocity fluctuation minus the square of the local mean be larger than some chosen threshold. This detected events with large du/dt.
The double peaks in the conditional averaged Re stress are roughly related to the Q2 and Q4 quadrants. Simultaneous rake measurements show that these events have great coherence in the wall normal direction.

Chen & Blackwelder: Passively heated wall and a rake of X-array hot-wires. Highly coherent ramps in the temperature fluctuations were observed. Conditioning on these ramps, conditional velocity fluctuation averages were obtained that show the outward motion of warmer, lower momentum fluid downstream of the front followed by inward motion of cooler, higher momentum flow upstream.

Antonia et al.: Similar study using heat as a passive scalar marker. Fig. shows conditional averages of u, v and theta and the momentum and heat fluxes in the inner layer of the TBL.

SLIDE 13
Head & Bandyopadhyay: Smoke visualization of boundary layer structure viewed in inclined planes and interpreted as hairpin vortices.

Balint et al.: A similar study with wall layer and potential flow separately marked by smoke and the tripping of the boundary layer varied. Photo shows the evolution and growth of wall layer structures which eventually penetrate the potential flow. The potential flow is also ingested deeply into the turbulent boundary layer.

Townsend: Proposed the attached eddy model

Perry et al.: Used this conceptual model of attached hairpin eddies, rolling up and lifting up out of near wall sheets of vorticity, to construct a theoretical model that attempts to explain many of the statistical features of the boundary layer, including the log layer.

SLIDE 14
Kim & Moin: Vorticity (vortex lines) showing hairpin and Ω-like shapes in a turbulent channel flow DNS. Cross-stream plane cut through the leg of the vorticity line bundle in the upper right figure shows that this is truly a vortex as revealed by the velocity vector projections on this plane.

SLIDE 15
Kim Moin & Moser: Their DNS was accepted by experimental researchers in part because of the flow visualization they did of simulated hydrogen bubbles that revealed the same structure as in physical experiments.

In this paper, they showed the first DNS distribution of the rms vorticity components and other statistics of the vorticity field.
Balint et al.: We published our rms vorticity component distributions and other vorticity field statistics, experimentally measured with our minature 9-sensor probe, that year in the Proceedings of the 1st European Turbulence Conference.

SLIDE 16
Spalart: A year later, in 1988, he published the first DNS of a turbulent boundary layer where he employed the so-called “fringe” method to rescale the flow allowing him to employ periodic boundary conditions in the streamwise direction. The figures are of the TKE budget and contours of vorticity projected onto streamwise and cross-stream inclined planes of the flow.

Balint et al.: Experimental values of the turbulent production and dissipation rates are compared to Spalart’s DNS values and the Kim, Moin and Moser DNS channel flow values in the figure on the right.

SLIDE 1
Balint et al.: Vorticity fluctuation component spectra compared to Spalart’s DNS.

Distribution of the terms of the transport of total enstrophy equation.

SLIDE 18
Aubry et al.: Expansion of the wall region using POD to obtain low-dimensional sets of ODEs. Streamwise rolls are revealed that have intermittent Reynolds stress “burst” characteristics. This was one of the first applications of low-dimensional chaotic dynamical systems theory to realistic turbulent open flows.

Antonia et al.: A rake made up of an array of 8 X-array hot-wires was used to construct sectional streamlines and contours of the large-scale vorticity in streamwise planes at several Reynolds numbers. Large-scale vortices (foci) and saddle points of high strainrate are evident in this frame of reference traveling to the left at 0.8 of the freestream velocity. Variation with Reynolds number is seen in the figure in the lower right.

SLIDE 19
Bernard et al.: Lagrangian analysis of the Reynolds shear stress that decomposes it exactly into (1) the correlation of u at the terminal point, a, with v at the set of initial points, b, (2) a “displacement transport” term and (3) an “acceleration transport” term. For large enough mixing times, this $u_a v_b$ bar correlation goes to zero, as seen in the distribution on the right. The displacement transport term is simply a sort of mixing length/mean gradient type effect. The acceleration transport term produces a significant fraction of the Reynolds stress, having a positive or negative contribution depending on position relative to the wall.

The upper right figure shows the pdfs of the particle displacements sorted by the quadrants of quadrant analysis as a function of y^+.
Their group also identified quasi-streamwise vortices with a recognition algorithm and studied particle displacements and Reynolds stress creation in relation to these vortices as seen in the middle lower figure.

SLIDE 20
Spina et al: Studied the structure of supersonic turbulent boundary layers adopting methods used in subsonic, low Reynolds number flows such as the VITA technique and quadrant analysis.

SLIDE 21
Robinson: Analyzed the Spalart DNS to study the structure of the flow. Low pressure was used as a criterion to detect vortices. Few complete hairpins were observed, but this could have been a result of the threshold values set. The relation of low-speed streaks and Q2 and Q4 Reynolds stress to the vortices is clearly seen. Robinson believed that hairpin-shaped vorticity lines are simply a result of their distortion by quasi-streamwise vortices, and that they do not necessarily, themselves, indicate the presence of true hairpins.

SLIDE 22
Tsinober et al.: Use of a 12-sensor hot-wire probe to demonstrate, experimentally, the most probable alignment of the vorticity vector with the intermediate eigenvector of the rate of strain tensor. This had previously been seen in DNS of both isotropic and shear flow turbulence and is now known to be a general characteristic of all turbulent flows.

Durbin: Tensorially consistent 2nd order closure modelling of the Reynolds stress transport equation. Applied to channel and boundary layer turbulent flows with and without pressure gradients and to flows around 90 deg. bends. Figures show model values of turbulence intensities and friction coefficient distributions compared to experimental values.

SLIDE 23
Choi et al.: Active control for drag reduction using (1) v control at the surface with suction and blowing based on detection in the flow of sweep and ejection events, (2) w control at the surface, (3) combinations of the two types of control, etc. The figures show the effects of control compared to no control on TKE production and dissipation rates and on the vorticity component rms distributions.

SLIDE 24
Saddoughi & Veeravalli: Performed a highly regarded experiment in the NASA AMES huge wind tunnel with its 80’ x 120’ test section to examine indicators of local isotropy in turbulent boundary layers. They documented the effects of Reynolds number and proximity to the wall. The figures here show examples of (1) compensated streamwise and cross-stream spectra rather far from the wall and at a
rather high Reynolds numbr (Re₃ = 1450) and (2) compensated second-order structure functions for streamwise and cross-stream velocity fluctuations. Both plots provide evidence of local isotropy under these conditions.

Wallace & Ong: We were kindly allowed to piggyback on their experiment to use our 12-sensor probe to examine local isotropy of the vorticity field. The figure shows evidence of it in the inertial subrange as seen in the ratio of the two cross-stream vorticity components computed from the streamwise component under isotropic assumptions to their measured values. This ratio should be unity for isotropic flow, and it is in the inertial subrange. Experimental error takes over in the dissipation range of this figure.

Mestayer had carried out an earlier and similar study in the high Reynolds number IMST Air-Sea Iteration Simulation tunnel at Re₃ = 616 in the dissipative range but not in the inertial subrange.

Slide 25
Nagano & Tagawa: Trajectory analysis based on uv plane quadrants illustrated in upper left. In lower right the number of types of types of trajectories are shown as a function of the Willmarth & Lu "hole" size. The figure on the right shows auto regressive (AR) model predictions of time series of temperature for various trajectory patterns.

SLIDE 26
Klewicki et al.: Developed field site southwest of Salt Lake City, Utah, on the Salt Flats, where measurements in the atmospheric surface layer could be carried out. At sundown, neutral stability occurs giving conditions similar to those in a laboratory boundary layer but at the very high Reynolds numbers, Re₉, of \(O(10^6)\). The figures show: (1) the histogram of spanwise low-speed stream spacing obtained from flow visualization, (2) distribution of the rms streamwise velocity distribution showing how the peak increases with Reynolds number, (3) the joint pdf of the u and v fluctuations at low and high Reynolds numbers and (4) the space-time auto-correlation of u at low and high Reynolds number.

Folz & Wallace: They have invited many research groups to work there over the years. We were there the first year, and, among other things, measured the contributions of all the terms to the dissipation rate.

SLIDE 27
Jeong et al.: Used method of detecting vortices with -λ₂, the second invariant of the velocity gradient tensor which indicates dominance of rotation over strain. Found quasi-streamwise vortices that are not in the form of hairpins. Vortices, of opposite sign, slightly inclined to the wall and skewed in the x-z plane, exist in staggered overlapping arrays. They state that a phase difference in space accounts for nearly
all of the Q2 and Q4 Reynolds stress as well as counter-gradient Q1 and Q3 Reynolds stress.

Schoopa & Hussain: Carried out a transient growth stability analysis to show how the vortices emerge out of instabilities of low-speed streaks under certain conditions.

SLIDE 28
Honkan & Andreopolous: Used a 12-sensor probe to obtain the angular orientation of the projection of the vorticity vector near the wall in wall normal and wall parallel planes of the flow.

Ong & Wallace: Obtained these orientations for the vorticity filaments that most contribute to the vorticity covariances from weighted vorticity component joint pdfs (covariance integrand plots).

SLIDE 29
Barenblatt et al.: Proposed a Reynolds number dependent power law alternative to the log law to describe the mean velocity in the overlap region. The figure shows many different data sets plotted as evidence to support this theory. The debate about the veracity of this partial similarity law compared to the complete similarity log law still continues.

SLIDE 30
Guarini et al.: Carried out a supersonic Mach 2.5 DNS that showed very little difference from subsonic turbulent boundary layer statistics. The figures show the distributions of the rms vorticity components and the TKE budget.

Kholmyanshy et al.: Carried out a study using a 20-sensor probe to measure both velocity and velocity gradient as well as temperature fluctuations. The measured many different properties of these fields including the joint pdf of the enstrophy production vs. production of strain shown in the figure.

SLIDE 31
Adrian et al.: Used planar PIV in numerous studies to reveal many features of the structure of turbulent boundary layers. Fig. in upper center compares rms spanwise vorticity to DNS and hot-wire values. The figures in the center and on the right show large scale zones of coherent momentum, high shear in ramps inclined to the wall and vortices that are interpreted as “heads” of hairpins. Their hairpin model, like those of others, accounts for Q2 and Q4 Reynolds stress. They also describe the hairpins as occurring in “packets” and account for the creation of new hairpins.

SLIDE 32
Chacin & Cantwell: Used critical point theory, primarily developed by Perry and Chong, to analyse the Spalart turbulent boundary layer DNS. The top middle figure shows regions of postitive discriminant in association with Reynolds stress events.
The top right figure shows the characteristic “tear drop” shape of the Q-R plane joint pdf with superimposed regions of Q2 and Q4 Reynolds stress. The regions in this plane with respect to the Villefosse line of zero discriminant are described by the flow categories in the figure to the lower left.

Andreopolous & Honkan: Obtained this teardrop shape jpdf from 12-sensor hot-wire measurements in the buffer layer of their experimental turbulent boundary layer. It is now believed to be a universal feature of turbulence.

SLIDE 33
Carlier & Stanislas: Used planar PIV to investigate structure in various planes, including planes tilted upstream and downstream across the flow, to study the eddy structure in the boundary layer at \(\text{Re}_\theta = 7,500 \). They used a pattern recognition technique that involved convolving a model vortex with the 2D flow field to educt the actual vortices. Instantaneous and average vortices are shown in the figures in the upper right. They studied Q2 and Q4 events in spatial relationship to these vortices.

SLIDE 34
Kim & Adrian: Observed very large scale motions (VLSMs) in a turbulent pipe flow that were 12 – 14 times as long as the pipe radius.

Del Alamo et al: Also observed these VLSMs in their channel flow DNS.

Hutchins & Maurusic: Observed VLSMs as long as \(20 \delta \) in the log and lower wake regions in their experiment in the Utah desert, and studied how they affect premultiplied 1D spectra of the streamwise velocity fluctuations. The rising plateau in the rms distribution further from the wall is related to the second peak in the spectrum coming from these VLSMs.

SLIDE 35
Ringuette et al.: Carried out a DNS at \(\text{Re}_\theta \approx 2600 \) and Mach \(\approx 3 \) in which they observed most of the same types of structures as in subsonic flow.

Pirozzoli et al.: Also carried out a supersonic DNS at Mach = 2 and \(\text{Re}_\theta = 950 – 1350 \). They studied the statistical properties of quasi-streamwise vortices near the wall and of hairpins and hairpin packets further from the wall. In the outer layer they state that these statistical properties are consistent with noninteracting closed loop vortices. In their later study they conclude that sheet-like structures have a greater influence on the statistical properties of the TBL than the vortices.

SLIDE 36
Mathis et al.: Studied the modulating effect that large scale motions in the outer flow have on the fluctuations in the inner region of the flow. They did this by filtering the streamwise velocity signals and correlating them. They examine how the degree of correlation depends on wall normal distance and how it is related to the 1D spectra.
SLIDE 37
Wu & Moin: Carried out a spatially developing DNS of the TBL which goes through bypass transition to turbulence. It exhibits a forest of hairpins. When the wall is passively heated, the temperature field also exhibits hairpins.

SLIDE 38
Sheng et al.: Used digital holography to study the wall layer structure in a square duct at Reₜ = 1470 and obtained conditionally averaged hairpin structures that emerge from the spanwise vorticity sheets near the wall and are related to high wall shear stress occurrences.

Elsinga et al: Found hairpin packets using tomographic PIV at Re₀ = 34,000 and Mach = 2

SLIDE 39
Schlatter et al.: Carried out boundary layer DNS up to Re₀ ≈ 4,300. They carefully studied statistical properties, and have also compared the consistency of various DNS studies. They don’t observe hairpins in their highest Reynolds number DNS.

SLIDE 40
Jimenez et al.: Carried out a TBL DNS up to Re₀ = 2100. They don’t observe hairpins, but they do observe the large scale coherent momentum events.

SLIDE 41
Guala et al.: Observations in the atmospheric surface layer quantifying interactions between the VLSMs and the turbulence from the energy containing to the dissipative scales.

Duan et al.: DNS of TBL up to hypersonic cases. Flow structure doesn’t change much.

SLIDE 42
Park et al.: Showed that statistics, including those of the fine scale properties, enstrophy and dissipation rate, are very similar in transitional turbulence spots and in developed turbulence. This implies that the structure is likely to be similar. Octant analysis showed that motions consistent with mean gradient transport of momentum and heat are the dominant contributors to the fluxes for both transitional spots and developed turbulence. The transport of momentum and heat is strongly associated with vortices as shown in the cross-stream cuts through the instantaneous fields for the transition and developed cases.

SLIDE 43

Summary
Review Articles and Special Volumes on Turbulent Boundary Layers and Turbulent Wall Layers
(send additions to wallace@umd.edu)

50 Jahre Grenzschichtforschung [Festshrift for Ludwig Prandtl]
Eds. H. Goetler and W. Tollmein
Vieweg & Son (1955), Braunschweig

The Structure of Turbulent Shear Flow
A. A. Townsend

The Turbulent Boundary Layer
L. S. K. Kovasznay

Pressure Fluctuations Beneath Turbulent Boundary Layers
W. W. Willmarth

Structure of Turbulence in Boundary Layers
W. W. Willmarth

The Vortical Structure of Bounded Turbulent Shear Flow
J. M. Wallace

Turbulence Control in Wall Flows
D. M. Bushnell & C. B. McGinley

The Turbulent Boundary Layer
K. R. Sreenivasan

Coherent Motions in the Turbulent Boundary Layer
S. K. Robinson

The Physics of Supersonic Turbulent Boundary Layers
E. F. Spina, A. J. Smits & S. K. Robinson
Reynolds Number Effects in Wall-Bounded Turbulent Flows
M. Gad-el-Hak & P. R. Bandyopadhyay
ASME Reprint No. AMR148

Advances in Fluid Mechanics: Self-Sustaining Mechanisms of Wall Turbulence
Ed. R. L. Panton

Boundary Layer Theory (Part IV)
H. Schlichting (revised by Klaus Gersten)
Springer Verlag (2000), Berlin, 8th Edition

Turbulent Flows over Rough Walls
Javier Jiménez

Wall-bounded turbulent flows at high Reynolds numbers: Recent advances and key issues

High-Reynolds Number Wall Turbulence
A. J. Smits, B. J. McKeon & I. Marusic

Selected Articles on Two-Dimensional, Zero-Pressure Gradient, Smooth Flat Plate Turbulent Boundary Layers and on Turbulent Wall Layers

Journal of Fluid Mechanics (1956 – Present)

Coles, D.
The law of the wake in the turbulent boundary layer,
1 (Issue 2), 1956, 191 - 226

Favre, A.J., Gaviglio, J.J. & Dumas, R.
Space-time double correlations and spectra in a turbulent boundary layer,
2 (Issue 4), 1957, 313 - 342
Favre, A.J., Gaviglio, J.J. & Dumas, R.
Further space-time correlations of velocity in a turbulent boundary layer,
3 (Issue 4) , 1958, 344 - 356

Grant, H.L.
The large eddies of turbulent motion,
4 (Issue 2) , 1958, 149 - 190

Townsend, A.A.
Equilibrium layers and wall turbulence,
11 (Issue 1) , 1961, 97 - 120

Willmarth, W.W. & Wooldridge, C.E.
Measurements of the fluctuating pressure at the wall beneath a thick turbulent boundary layer,
14 (Issue 2) , 1962, 187 - 210

Willmarth, W.W. & Roos, F.W.
Resolution and structure of the wall pressure field beneath a turbulent boundary layer,
22 (Issue 1) , 1965, 81 - 94

Townsend, A.A.
Self-preserving flow inside a turbulent boundary layer,
22 (Issue 4) , 1965, 773 - 797

Fiedler, H. & Head, M.R.
Intermittency measurements in the turbulent boundary layer,
25 (Issue 4) , 1966, 719 – 735

Mitchell, J.E. & Hanratty, T.J.
A study of turbulence at a wall using an electrochemical wall shear-stress meter,
26 (Issue 1) , 1966, 199 - 221
Tritton, D.J.
Some new correlation measurements in a turbulent boundary layer,
28 (Issue 3) , 1967, 439 - 462

Bull, M.K.
Wall-pressure fluctuations associated with subsonic turbulent boundary layer flow,
28 (Issue 4) , 1967, 719 - 754

Schubert, G. & Corcos, G.M.
The dynamics of turbulence near a wall according to a linear model,
29 (Issue 1) , 1967, 113 - 135

Bradshaw, P.
`Inactive' motion and pressure fluctuations in turbulent boundary layers,
30 (Issue 2) , 1967, 241 - 258

Kline, S.J., Reynolds, W.C., Schraub, F.A. & Runstadler, P.W.
The structure of turbulent boundary layers,
30 (Issue 4) , 1967, 741 - 773

Kline, S.J., Moffatt, H.K. & Morkovin, M.V.
Report on the AFOSR-IFP-Stanford conference on computation of turbulent boundary layers,
36 (Issue 3) , 1969, 481 - 484

Corino, E.R. & Brodkey, R.S.
A visual investigation of the wall region in turbulent flow,
37 (Issue 1) , 1969, 1 - 30

Townsend, A.A.
Entrainment and the structure of turbulent flow,
41 (Issue 1) , 1970, 13 - 46
Kovasznay, L.S.G., Kibens, V. & Blackwelder, R.F.
Large-scale motion in the intermittent region of a turbulent boundary layer,
41 (Issue 2) , 1970, 283 - 325

Sirkar, K.K. & Hanratty, T.J.
The limiting behaviour of the turbulent transverse velocity component close to a wall,
44 (Issue 3) , 1970, 605 - 614

Blake, W.K.
Turbulent boundary-layer wall-pressure fluctuations on smooth and rough walls,
44 (Issue 4) , 1970, 637 - 660

Wills, J.A.B.
Measurements of the wave-number/phase velocity spectrum of wall pressure beneath a turbulent boundary layer,
45 (Issue 1) , 1971, 65 - 90

Kim, H.T., Kline, S.J. & Reynolds, W.C.
The production of turbulence near a smooth wall in a turbulent boundary layer,
50 (Issue 1) , 1971, 133 - 160

Grass, A.J.
Structural features of turbulent flow over smooth and rough boundaries,
50 (Issue 2) , 1971, 233 - 255

Owen, F.K. & Horstman, C.C.
On the structure of hypersonic turbulent boundary layers,
53 (Issue 4) , 1972, 611 - 636

Wallace, J.M., Eckelmann, H. & Brodkey, R.S.
The wall region in turbulent shear flow,
54 (Issue 1) , 1972, 39 - 48

Willmarth, W.W. & Lu, S.S.
Structure of the Reynolds stress near the wall,
55 (Issue 1) , 1972, 65 - 92
Antonia, R.A.
Conditionally sampled measurements near the outer edge of a turbulent boundary layer,
56 (Issue 1), 1972, 1 - 18

Antonia, R.A. & Atkinson, J.D.
High-order moments of Reynolds shear stress fluctuations in a turbulent boundary layer,
58 (Issue 3), 1973, 581 - 593

Lu, S.S. & Willmarth, W.W.
Measurements of the structure of the Reynolds stress in a turbulent boundary layer,
60 (Issue 3), 1973, 481 - 511

Offen, G.R. & Kline, S.J.
Combined dye-streak and hydrogen-bubble visual observations of a turbulent boundary layer,
62 (Issue 2), 1974, 223 - 239

Brodkey, R.S., Wallace, J.M. and Eckelmann, H.
Some Properties of Truncated Turbulence Signals in Bounded Shear Flows,
63 (Issue 2), 1974, 209 - 224

Eckelmann, H.
The structure of the viscous sublayer and the adjacent wall region in a turbulent channel flow,
65 (Issue 3), 1974, 439 - 459

Lee, M.K., Eckelman, L.D. & Hanratty, T.J.
Identification of turbulent wall eddies through the phase relation of the components of the fluctuating velocity gradient,
66 (Issue 1), 1974, 17 - 33
Ueda, H. & Hinze, J.O.
Fine-structure turbulence in the wall region of a turbulent boundary layer,
67 (Issue 1), 1975, 125 - 143

Offen, G.R. & Kline, S.J.
A proposed model of the bursting process in turbulent boundary layers,
70 (Issue 2), 1975, 209 - 228

Bark, F.H.
On the wave structure of the wall region of a turbulent boundary layer,
70 (Issue 2), 1975, 229 - 250

Blackwelder, R.F. & Kaplan, R.E.
On the wall structure of the turbulent boundary layer,
76 (Issue 1), 1976, 89 - 112

Fulachier, L. & Dumas, R.
Spectral analogy between temperature and velocity fluctuations in a turbulent boundary layer,
77 (Issue 2), 1976, 257 – 277

Wallace, J.M., Brodkey, R.S. & Eckelmann, H.
Pattern Recognized Structures in Bounded Shear Flows,
83 (Issue 1), 1977, 673 - 693

Chen, C.-H.P. & Blackwelder, R.F.
Large-scale motion in a turbulent boundary layer: a study using temperature contamination,
89 (Issue 1), 1978, 1 - 31

Kreplin, H.-P. & Eckelmann, H.
Propagation of perturbations in the viscous sublayer and adjacent wall region,
95 (Issue 2), 1979, 305 - 322
Hatzivramidis, D.T. & Hanratty, T.J.
The representation of the viscous wall region by a regular eddy pattern,
95 (Issue 4) , 1979, 655 - 679

Head, M.R. & Bandyopadhyay, P.
New aspects of turbulent boundary layer structure ,
107 (Issue 4) , 1981, 297 - 337

Raupach, M.R.
Conditional statistics of Reynolds stress in rough-wall and smooth-wall turbulent boundary layers,
108 , 1981, 363 - 382

Pullin, D.I.
The nonlinear behaviour of a constant vorticity layer at a wall,
108 , 1981, 401 - 421

Perry, A.E. & Chong, M.S.
On the mechanism of wall turbulence,
119 , 1982, 173 - 217

Reynolds-number dependence of the structure of a turbulent boundary layer,
121 , 1982, 123 - 140

Murlis, J., Tsai, H.M. & Bradshaw, P.
The structure of turbulent boundary layers at low Reynolds numbers,
122 , 1982, 13 - 56

Subramanian, C.S., Rajagopalan, S., Antonia, R.A. & Chambers, A.J.
Comparison of conditional sampling and averaging techniques in a turbulent boundary layer,
123 , 1982, 335 - 362
Hogenes, J.H.A. & Hanratty, T.J.
The use of multiple wall probes to identify coherent flow patterns in the viscous wall region,
124, 1982, 363 - 390

Mestayer, P.
Local isotropy and anisotropy in a high-Reynolds-number turbulent layer,
125, 1982, 475 - 503

Thomas, A.S.W. & Bull, M.K.
On the role of wall-pressure fluctuations in deterministic motions in the turbulent boundary layer,
128, 1983, 283 - 322

Smith, C.R. & Metzler, S.P.
The characteristics of low-speed streaks in the near-wall region of a turbulent boundary layer,
129, 1983, 27 - 54

Nikolaides, C., Lau, K.K. & Hanratty, T.J. A study of the spanwise structure of coherent eddies in the viscous wall region,
130, 1983, 91 - 108

Blackwelder, R.F. & Haritonidis, J.H.
Scaling of the bursting frequency in turbulent boundary layers,
132, 1983, 87 - 103

Kaneda, Y. & Leslie, D.C. Tests of subgrid models in the near-wall region using represented velocity fields,
132, 1983, 349 - 373

Schewe, G. On the structure and resolution of wall-pressure fluctuations associated with turbulent boundary-layer flow,
134, 1983, 311 - 328
Johansson, A.V. & Alfredsson, P.H.
Effects of imperfect spatial resolution on measurements of wall-bounded turbulent shear flows,
137, 1983, 409 - 421

Moin, P. & Kim, J.
The structure of the vorticity field in turbulent channel flow: Analysis of instantaneous fields and statistical correlations,
155, 1985, 441 - 464

Savas, O. & Coles, D.
Coherence measurements in synthetic turbulent boundary layers,
160, 1985, 421 - 446

Kim, J. & Moin, P.
The structure of the vorticity field in turbulent channel flow: Part 2. Study of ensemble-averaged fields,
162, 1986, 339 - 363

Talmon, A.M., Kunen, J.M.G. & Ooms, G.
Simultaneous flow visualization and Reynolds-stress measurement in a turbulent boundary layer,
163, 1986, 459 - 478

Perry, A.E., Henbest, S.M. & Chong, M.S.
A theoretical and experimental study of wall turbulence,
165, 1986, 163 - 199

Jang, P.S., Benney, D.J. & Gran, R.L.
On the origin of streamwise vortices in a turbulent boundary layer,
169, 1986, 109 - 123

Johansson, A.V., Her, J.-Y. & Haritonidis, J.H.
On the generation of high-amplitude wall-pressure peaks in turbulent boundary layers and spots,
175, 1987, 119 - 142
Krishnamoorthy, L.V. & Antonia, R.A.
Temperature-dissipation measurements in a turbulent boundary layer,
176 , 1987, 265 - 281

Kim, J., Moin P. & Moser, R.J.
Turbulence statistics in fully developed channel flow at low Reynolds number,
177 , 1987, 133 - 166

Perry, A.E., Lim, K.L. & Henbest, S.M.
An experimental study of the turbulence structure in smooth- and rough- wall boundary layers,
177 , 1987, 437 - 466

Maruyama, S. & Tanaka, H.
The effect of spatial restriction on the inner-layer structure of wall turbulence,
177 , 1987, 485 - 500

Spina, E.F. & Smits, A.J.
Organized structures in a compressible, turbulent boundary layer,
182 , 1987, 85 - 109

Swearingen, J.D. & Blackwelder, R.F.
The growth and breakdown of streamwise vortices in the presence of a wall,
182 , 1987, 255 - 290

Spalart, P.R.
Direct simulation of a turbulent boundary layer up to \(R_\theta = 1410 \),
187 , 1988, 61 - 98

Aubry, N., Holmes, P., Lumley, J.L. & Stone, E.
The dynamics of coherent structures in the wall region of a turbulent boundary layer,
192 , 1988, 115 - 173

Antonia, R.A. & Fulachier, L.
Topology of a turbulent boundary layer with and without wall suction,
198 , 1989, 429 - 451
Asai, M. & Nishioka, M.
Origin of the peak-valley wave structure leading to wall turbulence,
208, 1989, 1 - 23

Antonia, R.A. & Bisset, D.K.
Spanwise structure in the near-wall region of a turbulent boundary layer,
210, 1990, 437 - 458

Antonia, R.A., Bisset, D.K. & Browne, L.W.B.
Effect of Reynolds number on the topology of the organized motion in a turbulent boundary layer,
213, 1990, 267 - 286

Perry, A.E. & Li, J.D.
Experimental support for the attached-eddy hypothesis in zero-pressure- gradient turbulent boundary layers,
218, 1990, 405 - 438

Klewicki, J.C. & Falco, R.E.
On accurately measuring statistics associated with small-scale structure in turbulent boundary layers using hot-wire probes,
219, 1990, 119 - 142

Bernard, P.S. & Handler, R.A.
Reynolds stress and the physics of turbulent momentum transport,
220, 1990, 99 - 124

Lai, Y.G. & So, R.M.C.
On near-wall turbulent flow modelling,
221, 1990, 641 - 673

Spina, E.F., Donovan, J.F. & Smits, A.J.
On the structure of high-Reynolds-number supersonic turbulent boundary layers,
222, 1991, 293 - 327
Johansson, A.V., Alfredsson, P.H. & Kim, J.
Evolution and dynamics of shear-layer structures in near-wall turbulence,
224 , 1991, 579 - 599

Jimenez, J. & Moin, P.
The minimal flow unit in near-wall turbulence,
225 , 1991, 213 - 240

The velocity and vorticity vector fields of a turbulent boundary layer. Part 1.
Simultaneous measurement by hot-wire anemometry,
228 , 1991, 25 - 51

The velocity and vorticity vector fields of a turbulent boundary layer. Part 2. Statistical properties,
228 , 1991, 53 - 86

Erm, L.P. & Joubert, P.N.
Low-Reynolds-number turbulent boundary layers,
230 , 1991, 1 - 44

Berkooz, G., Holmes, P. & Lumley, J.L.
Intermittent dynamics in simple models of the turbulent wall layer,
230 , 1991, 75 - 95

Wark, C.E. & Nagib, H.M.
Experimental investigation of coherent structures in turbulent boundary layers,
230 , 1991, 183 - 208

Lu, L.J. & Smith, C.R.
Use of flow visualization data to examine spatial-temporal velocity and burst-type characteristics in a turbulent boundary layer,
Morrison, J.F., Subramanian, C.S. & Bradshaw, P.
Bursts and the law of the wall in turbulent boundary layers,
241, 1992, 75 - 108

Tsinober, A, Kit, E. & Dracos, T.
Experimental investigation of the field of velocity gradients in turbulent flows
242, 1992, 169 - 192

Naguib, A.M. & Wark, C.E.
An investigation of wall-layer dynamics using a combined temporal filtering and correlation technique,
243, 1992, 541 - 560

Sanghi, S. & Aubry, N.
Mode interaction models for near-wall turbulence,
247, 1993, 455 - 488

Jimenez, J. & Orlandi, P..
The rollup of a vortex layer near a wall,
248, 1993, 297 - 313

Durbin, P.A.
A Reynolds stress model for near-wall turbulence,
249, 1993, 465 - 498

Bernard, P.S., Thomas, J.M. & Handler, R.A.
Vortex dynamics and the production of Reynolds stress,
253, 1993, 385 - 419

Choi, H., Moin, P. & Kim, J.
Direct numerical simulation of turbulent flow over riblets,
262, 1993, 503 - 110

Choi, H., Moin, P. & Kim, J.
Active turbulence control for drag reduction in wall-bounded flows,
262, 1994, 75 - 110
Saddoughi, S.G. & Veeravalli, S.V.
Local isotropy in turbulent boundary layers at high Reynolds number, 268, 1994, 333 - 372

Antonia, R.A. & Kim, J.
Low-Reynolds-number effects on near-wall turbulence, 276, 1994, 61 - 80

Krogstad, P.-A. & Antonia, R.A.
Structure of turbulent boundary layers on smooth and rough walls, 277, 1994, 1 - 21

Hamilton, J.M., Kim, J. & Waleffe, F.
Regeneration mechanisms of near-wall turbulence structures, 287, 1995, 317 - 348

Jovanovic, J., Ye, Q.-Y. & Durst, F.
Statistical interpretation of the turbulent dissipation rate in wall-bounded flows, 293, 1995, 321 - 347

Perot, B. & Moin, P.

Perot, B. & Moin, P.

Durst, F., Jovanovic, J. & Sender, J.
LDA measurements in the near-wall region of a turbulent pipe flow, 295, 1995, 305 - 335
Perry, A.E. & Marusic, I.
A wall-wake model for the turbulence structure of boundary layers. Part 1. Extension of the attached eddy hypothesis,
298, 1995, 361 - 388

Marusic, I. & Perry, A.E.
A wall-wake model for the turbulence structure of boundary layers. Part 2. Further experimental support,
298, 1995, 389 - 407

Nagano, Y. & Tagawa, M.
Coherent motions and heat transfer in a wall turbulent shear flow,
305, 1995, 127 - 157

Andreopoulos, J. & Agui, J.H.
Wall-vorticity flux dynamics in a two-dimensional turbulent boundary layer,
309, 1996, 45 - 84

Jeong, J., Hussain, F., Schoppa, W. & Kim, J.
Coherent structures near the wall in a turbulent channel flow,
332, 1997, 185 - 214

Aronson, D., Johansson, A.V. & Lofdahl, L.
Shear-free turbulence near a wall,
338, 1997, 363 - 385

Honkan, A. & Andreopoulos, Y.
Vorticity, strain-rate and dissipation characteristics in the near-wall region of turbulent boundary layers,
350, 1997, 29 - 96

Hartel, C. & Kleiser, L.
Analysis and modelling of subgrid-scale motions in near-wall turbulence,
356, 1998, 327 - 352
Chong, M. ., Soria, J., Perry, A.E., Chacin, J., Cantwell, B. J. & Na, Y.
Turbulence structures of wall-bounded shear flows found using DNS data,
357 , 1998, 225 - 248

Ong, L. & Wallace, J.M.
Joint probability density analysis of the structure and dynamics of the vorticity field of a
turbulent boundary layer,
367 , 1998, 291 - 328

Jimenez, J. & Pinelli, A.
The autonomous cycle of near-wall turbulence,
389 , 1999, 335 - 359

Seal, C.V. & Smith, C.R.
Visualization of a mechanism for three-dimensional interaction and near-wall eruption,
394 , 1999, 193 - 203

Chacin, J.M. & Cantwell, B.J.
Dynamics of a low Reynolds number turbulent boundary layer,
404 , 2000, 87 - 115

Barenblatt, G.I., Chorin, A.J. & Prostokishin, V.M.
Self-similar intermediate structures in turbulent boundary layers at large Reynolds
numbers,
410 , 2000, 263 - 283

Guarini, S.E., Moser, R.D., Shariff, K. & Wray, A.
Direct numerical simulation of a supersonic turbulent boundary layer at Mach 2.5,
414 , 2000, 1 - 33

Adrian, R.J. , Meinhart, C.D. & Tomkins, C.D.
Vortex organization in the outer region of the turbulent boundary layer,
422 , 2000, 1 - 54
DeGraff, D.B. & Eaton, J.K.
Reynolds-number scaling of the flat-plate turbulent boundary layer,
422 , 2000, 319 - 346

Christensen, K.T. & Adrian, R.J.
Statistical evidence of hairpin vortex packets in wall turbulence,
431 , 2001, 433 - 443

Jimenez, J. & Simens, M.P.
Low-dimensional dynamics in a turbulent wall,
435 , 2001, 81 - 91

Andreopoulos, Y. & Honkan, A.
An experimental study of the dissipative and vortical motion in turbulent boundary layers,
439 , 2001, 131 - 163

Nickels, T.B. & Marusic, I.
On the different contributions of coherent structures to the spectra of a turbulent round jet and a turbulent boundary layer,
448 , 2001, 367 - 385

Schoppa, W. & Hussain, F.
Coherent structure generation in near-wall turbulence,
453 , 2002, 57 - 108

Ganapathisubramani, B., Longmire, E.K. & Marusic, I.
Characteristics of vortex packets in turbulent boundary layers,
478 , 2003, 35 - 46

Tomkins, C.D. & Adrian, R. J.
Spanwise structure and scale growth in turbulent boundary layers,
490 , 2003, 37 - 74
Dunn, D.C. & Morrison, J.F.
Anisotropy and energy flux in wall turbulence,
491, 2003, 353 - 378

Rathnasingham, R. & Breuer, K.S.
Active control of turbulent boundary layers,
495, 2003, 209 - 233

Lindgren, B., Osterlund, J.M. & Johansson, A.V.
Evaluation of scaling laws derived from Lie group symmetry methods in zero-pressure-gradient turbulent boundary layers,
502, 2004, 127 - 152

Ferrante, A. & Elghobashi, S.
On the physical mechanisms of drag reduction in a spatially developing turbulent boundary layer laden with microbubbles,
503, 2004, 345 - 355

Jimenez, J., del Alamo, J.C. & Flores, O.
The large-scale dynamics of near-wall turbulence
505, 2004, 179 - 199

Delo, C.J., Kelso, R.M. & Smits, A.J.
Three-dimensional structure of a low-Reynolds-number turbulent boundary layer,
512, 2004, 47 - 83

Carlotti, P. & Drobinski, P.
Length scales in wall-bounded high-Reynolds-number turbulence,
516, 2004, 239 - 264

Marati, N., Casciola, C.M. & Piva, R.
Energy cascade and spatial fluxes in wall turbulence,
521, 2004, 191 - 215
Wei, T., Fife, P., Klewicki, J. & McMurtry, P.
Properties of the mean momentum balance in turbulent boundary layer, pipe and channel flows,
522 , 2005, 303 - 327

Investigation of large-scale coherence in a turbulent boundary layer using two-point correlations,
524 , 2005, 57 - 80

Fife, P., Wei, T., Klewicki, J. & McMurtry, P.
Stress gradient balance layers and scale hierarchies in wall-bounded turbulent flows,
532 , 2005, 165 - 189

Carlier, J. & Stanislas, M.
Experimental study of eddy structures in a turbulent boundary layer using particle image velocimetry,
535 , 2005, 143 - 188

Hutchins, N., Hambleton, W.T. & Marusic, I.
Inclined cross-stream stereo particle image velocimetry measurements in turbulent boundary layers,
541 , 2005, 21 - 54

Ferrante, A. & Elghobashi, S.
Reynolds number effect on drag reduction in a microbubble-laden spatially developing turbulent boundary layer,
543 , 2005, 93 - 106

Chernyshenko, S.I. & Baig, M.F.
The mechanism of streak formation in near-wall turbulence ,
544 , 2005, 99 - 131

Tomkins, C.D. & Adrian, R.J.
Energetic spanwise modes in the logarithmic layer of a turbulent boundary layer,
545 , 2005, 141 - 162
Kunkel, G.J. & Marusic, I.
Study of the near-wall-turbulent region of the high-Reynolds-number boundary layer using an atmospheric flow,
548, 2006, 375 - 402

Davidson, P.A., Nickels, T.B. & Krogstad, P.-A.
The logarithmic structure function law in wall-layer turbulence,
550, 2006, 51 - 60

Ganapathisubramani, B., Clemens, N.T. & Dolling, D.S.
Large-scale motions in a supersonic turbulent boundary layer,
556, 2006, 271 - 282

Hambleton, W.T., Hutchins, N. & Marusic, I.
Simultaneous orthogonal-plane particle image velocimetry measurements in a turbulent boundary layer,
560, 2006, 53 - 64

Wu, Y. & Christensen, K.T.
Population trends of spanwise vortices in wall turbulence,
568, 2006, 55 - 76

Martin, M.P.
Direct numerical simulation of hypersonic turbulent boundary layers. Part 1. Initialization and comparison with experiments,
570, 2007, 347 - 364

Natrajan, V.K. & Christensen, K.T.
Spatial signatures of retrograde spanwise vortices in wall turbulence,
574, 2007, 155 - 167

Hutchins, N. & Marusic, I.
Evidence of very long meandering features in the logarithmic region of turbulent boundary layers,
579, 2007, 1 - 28
Morris, S.C., Stolpa, S.R., Slaboch, P.E. & Klewicki, J.
Near surface particle image velocimetry measurements in a transitionally rough-wall atmospheric boundary layer,
580, 2007, 319 - 338

Tsuji, Y., Fransson, J.H.M., Alfredsson, P.H. & Johansson, A.V.
Pressure statistics and their scaling in high-Reynolds-number turbulent boundary layers,
585, 2007, 1 - 40

Gulitski, G., Kholmyansky, M., Kinzelbach, W., Luthi, B., Tsinober, A. & Yorish, S.
Velocity and temperature derivatives in high-Reynolds-number turbulent flows in the atmospheric surface layer.
Part 1. Facilities, methods and some general results,
589, 2007, 57 – 81
Part 2. Accelerations and related matters,
589, 2007, 83 – 102
Part 3. Temperature and joint statistics of temperature and velocity derivatives.,
589, 2007, 103 - 123

Volino, R.J., Schultz, M.P. & Flack, K.A. Turbulence structure in rough- and smooth-wall boundary layers,
592, 2007, 263 - 293

Ringuette, M.J., Wu, M. & Martin, M.P.
Coherent structures in direct numerical simulation of turbulent boundary layers at Mach 3,
594, 2008, 59 - 69

Stanislas, M., Perret, L. & Foucaut, J.-M.
Vortical structures in the turbulent boundary layer: a possible route to a universal representation,
602, 2008, 327 - 382
Ganapathisubramani, B.
Statistical structure of momentum sources and sinks in the outer region of a turbulent boundary layer,
606, 2008, 225 - 237

Klewicki, J.C., Priyadarshana, P.J.A. & Metzger, M.M.
Statistical structure of the fluctuating wall pressure and its in-plane gradients at high Reynolds number,
609, 2008, 195 - 220

Jimenez, J. & Hoyas, S.
Turbulent fluctuations above the buffer layer of wall-bounded flows,
611, 2008, 215 - 236

Pirozzoli, S., Bernardini, M. & Grasso, F.
Characterization of coherent vortical structures in a supersonic turbulent boundary layer,
613, 2008, 205 - 231

Dennis, D.J.C. & Nickels, T.B.
On the limitations of Taylor's hypothesis in constructing long structures in a turbulent boundary layer,
614, 2008, 197 - 206

Jones, M.B., Nickels, T.B. & Marusic, I.
On the asymptotic similarity of the zero-pressure-gradient turbulent boundary layer,
616, 2008, 195 - 203

Camussi, R., Robert, G. & Jacob, M.C.
Cross-wavelet analysis of wall pressure fluctuations beneath incompressible turbulent boundary layers,
617, 2008, 11 - 30

Geraschenko, S., Sharp, N.S., Neuscamman, S. & Warhaft, Z.
Lagrangian measurements of inertial particle accelerations in a turbulent boundary layer,
617, 2008, 255 - 281
Cossu, C., Pujals, G. & Depardon, S.
Optimal transient growth and very large-scale structures in turbulent boundary layers,
619, 2009, 79 - 94

Mathis, R., Hutchins, N. & Marusic, I.
Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers,
628, 2009, 311 - 337

Marusic, I.
Unravelling near walls turbulence,
630, 2009, 1 - 4

Wu, X. & Moin, P.
Direct numerical simulation of turbulence in a nominally-zero-pressure-gradient flat-plate boundary layer,
630, 2009, 5 - 41

Chung, D. & Pullin, D.I. Large-eddy simulation and wall modelling of turbulent channel flow,
631, 2009, 281 - 309

Sheng, J., Malkiel, E. & Katz, J.
Buffer layer structures associated with extreme wall stress events in a smooth wall turbulent boundary layer,
633, 2009, 17 - 60

Grosse, S. & Schroder, W.
Wall-shear stress patterns of coherent structures in turbulent duct flow,
633, 2009, 147 - 158

Hutchins, N., Nickels, T.B., Marusic, I. & Chong, M.S.
Hot-wire spatial resolution issues in wall-bounded turbulence.,
635, 2009, 103 - 136
Elsinga, G.E., Adrian, R.J., van Oudheusden, B.W. & Scarano, F. Three-dimensional vortex organization in a high-Reynolds-number supersonic turbulent boundary layer, 644, 2010, 35 - 60

Pirozzoli, S., Bernardini, M. & Grasso, F. On the dynamical relevance of coherent vortical structures in turbulent boundary layers, 648, 2010, 325 - 349

Yeo, K., Kim, B.-G. & Lee, C. On the near-wall characteristics of acceleration in turbulence, 659, 2010, 405 - 419

Jimenez, J., Hoyas, S., Simens, M.P. & Mizuno, Y. Turbulent boundary layers and channels at moderate Reynolds numbers, 657, 2010, 335 - 360

Schlatter, P. & Orlu, R Assessment of direct numerical simulation data of turbulent boundary layers, 659, 2010, 116 - 126
Wu, X.
Establishing the generality of three phenomena using a boundary layer with free-stream passing wakes,
664 , 2010, 193 - 219

The mean velocity profile of a smooth-flat-plate turbulent boundary layer at high Reynolds number,
665 , 2010, 357 - 381

Guala, M., Metzger, M. & McKeon, B.J.
Interactions within the turbulent boundary layer at high Reynolds number,
666 , 2011, 573 - 604

Duan, L., Beekman, I. & Martin, M.P.
Direct numerical simulation of hypersonic turbulent boundary layers. Part 3: Effect of Mach number,
672 , 2011, 245 - 267

Lee, J.H. & Sung, H.J.
Very-large-scale motions in a turbulent boundary layer,
673 , 2011, 80 – 120

Dennis, D.J.C. & Nickels, T.B.
Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 1: Vortex packets,
673 , 2011, 180 - 217

Dennis, D.J.C. & Nickels, T.B.
Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 2: Long structures,
673 , 2011, 218 - 244

Three-dimensional conditional structure of a high-Reynolds-number turbulent boundary layer,
673 , 2011, 255 - 285

Physics of Fluids and Physics of Fluids A (1959 – Present)

Turbulent Boundary Layer Measurements at Mach Numbers from 8 to 10
F. K. Hill
Phys. Fluids 2, 668 (1959)

Patterns in Turbulent Flow in the Wall-Adjacent Region
F. M. Richardson and K. O. Beatty
Phys. Fluids 2, 718 (1959)

Spectral Energy Budget in Wall Turbulence
J. L. Lumley
Phys. Fluids 7, 190 (1964)

The Turbulent Boundary Layer in a Compressible Fluid
Donald Coles
Phys. Fluids 7, 1403 (1964)

Structure of the Turbulent Boundary Layer
Leslie S. G. Kovasznay
Phys. Fluids 10, S25 (1967)

Study of Turbulence Close to a Solid Wall
Thomas J. Hanratty
Phys. Fluids 10, S126 (1967)

Statistical Theory of Wall Turbulence
Michio Ohji
Phys. Fluids 10, S153 (1967)
Joint Density Functions of Turbulent Variables in the Atmospheric Boundary Layer
J. Z. Holland
Phys. Fluids 10, S220 (1967)

Structure of the Turbulent Boundary Layer on a Smooth Wall
S. J. Kline and W. C. Reynolds
Phys. Fluids 10, S304 (1967)

Correlation Measurements and the Large Eddies of a Turbulent Boundary Layer
D. J. Tritton
Phys. Fluids 10, S308 (1967)

Viscous Sublayer and Adjacent Wall Region in Turbulent Pipe Flow
Henry P. Bakewell and John L. Lumley
Phys. Fluids 10, 1880 (1967)

Mean Period of the Turbulent Production Mechanism in a Boundary Layer
John Laufer and M. A. Badri Narayanan
Phys. Fluids 14, 182 (1971)

Statistical Characteristics of Reynolds Stress in a Turbulent Boundary Layer
A. K. Gupta and R. E. Kaplan
Phys. Fluids 15, 981 (1972)

Time Scales and Correlations in a Turbulent Boundary Layer
Ron F. Blackwelder and Leslie S. G. Kovasznay
Phys. Fluids 15, 1545 (1972)

Measurements of Reynolds Shear Stress Fluctuations in a Turbulent Boundary Layer
R. A. Antonia
Phys. Fluids 15, 1669 (1972)

Turbulent energy production, dissipation, and transfer
Robert S. Brodkey, Stavros G. Nychas, Joseph L. Taraba, and James M. Wallace
Comment on “Statistical characteristics of Reynolds stress in a turbulent boundary layer”
S. Corrsin
Phys. Fluids 16, 341 (1973)

Comments on “Statistical characteristics of Reynolds stress in a turbulent boundary layer”
J. C. Wyngaard and Y. Izumi
Phys. Fluids 16, 455 (1973)

Probability distributions and correlations in a turbulent boundary layer
François N. Frenkiel and Philip S. Klebanoff
Phys. Fluids 16, 725 (1973)

Comments on “Statistical characteristics of Reynolds stress in a turbulent boundary layer”
R. A. Antonia, J. D. Atkinson, and R. E. Luxton
Phys. Fluids 16, 956 (1973)

Mean velocity and shear stress distributions in turbulent boundary layers
A. E. Perry and W. H. Schofield
Phys. Fluids 16, 2068 (1973)

Pressure perturbation of a turbulent boundary layer
R. F. Blackwelder and H. H. W. Woo

Reply to comments by P. Bradshaw
Robert S. Brodkey, Joseph L. Taraba, Stavros G. Nychas, and James M. Wallace

”Bursting” frequencies obtained from wall shear stress fluctuations in a turbulent boundary layer
J. H. Strickland and Roger L. Simpson

High frequency wall-pressure fluctuations in turbulent boundary layers
M. K. Bull and A. S. W. Thomas
Local anisotropy in heated and cooled turbulent boundary layers
Patrice G. Mestayer, Carl H. Gibson, Michel F. Coantic, and Anandkumar S. Patel
Phys. Fluids 19, 1279 (1976)

Reynolds stress and joint probability density distributions in the u-v plane of a turbulent channel flow
James M. Wallace and Robert S. Brodkey
Phys. Fluids 20, 351 (1977)

Structure of temperature fluctuations in a turbulent boundary layer
R. A. Antonia and H. Q. Danh
Phys. Fluids 20, 1050 (1977)

Temperature dissipation fluctuations in a turbulent boundary layer
K. R. Sreenivasan, R. A. Antonia, and H. Q. Danh
Phys. Fluids 20, 1238 (1977)

Survey and new measurements of turbulent structure near the wall
William W. Willmarth and Thomas J. Bogar
Phys. Fluids 20, S9 (1977)

Turbulent fluctuations in the viscous wall region for Newtonian and drag reducing fluids
Thomas J. Hanratty, Larry G. Chorn, and Dimitrios T. Hatzivramidis
Phys. Fluids 20, S112 (1977)

Coherent motions in the outer region of turbulent boundary layers
R. E. Falco

Investigation of pressure fluctuations beneath a turbulent boundary layer by means of an optical method
A. Dinkelacker, M. Hessel, G. E. A. Meier, and G. Schewe
Phys. Fluids 20, S216 (1977)
Vorticity and turbulence production in pattern recognized turbulent flow structures
Helmut Eckelmann, Stavros G. Nychas, Robert S. Brodkey, and James M. Wallace
Phys. Fluids 20, S225 (1977)

Large structure in a turbulent boundary layer
Garry L. Brown and Andrew S. W. Thomas

Temperature dissipation fluctuations in a turbulent boundary layer
K. R. Sreenivasan, H. Q. Danh, and R. A. Antonia
Phys. Fluids 20, S288 (1977)

Log-normality of temperature dissipation in a turbulent boundary layer
R. A. Antonia and K. R. Sreenivasan
Phys. Fluids 20, 1800 (1977)

Behavior of the three fluctuating velocity components in the wall region of a turbulent channel flow
Hans-Peter Kreplin and Helmut Eckelmann
Phys. Fluids 22, 1233 (1979)

Skewness of spatial derivatives of temperature in a turbulent boundary layer
R. A. Antonia and C. W. Van Atta
Phys. Fluids 22, 2430 (1979)

Large structure with a characteristic upstream interface in turbulent boundary layers
Promode Bandyopadhyay

Turbulent boundary layer at low Reynolds number
L. P. Purtell, P. S. Klebanoff, and F.T. Buckley
Use of a quadrant analysis technique to identify coherent structures in a turbulent boundary layer
S. Rajagopalan and R. A. Antonia

A model for the skewness of the temperature derivative in a turbulent boundary layer
C. S. Subramanian and R. A. Antonia

Spanwise correlation of temperature in a turbulent boundary layer
S. Rajagopalan, C. S. Subramanian, R. A. Antonia, and A. J. Chambers

Period between bursting in turbulent boundary layers
Promode R. Bandyopadhyay

Observation of streamwise rotation in the near-wall region of a turbulent boundary layer
C. R. Smith and S. P. Schwartz

Asymptotic near-wall stress dissipation rates in a turbulent flow
B. E. Launder and W. C. Reynolds

On the structure of wall-bounded turbulent flows
John Kim

Analogies between transitional and turbulent boundary layers
Ron F. Blackwelder

Conditional averages associated with the fine structure in a turbulent boundary layer
S. Rajagopalan and R. A. Antonia
Turbulent normal velocity fluctuations close to a wall
Douglas S. Finnicum and Thomas J. Hanratty

Second-order modeling of near-wall turbulence
T-H. Shih and J. L. Lumley

Coherent structures in a turbulent boundary layer. Part 1: Generation of “artificial” bursts
Mohamed Gad-el-Hak and A. K. M. Fazlé Hussain

The wall region of a turbulent boundary layer
W. R. C. Phillips

Modeling the viscous wall region
Karam Anwar Azab and John B. McLaughlin

Scaling of the bursting frequency in turbulent boundary layers at low Reynolds numbers
John Kim and Philippe R. Spalart

Scaling of the “bursting” period in turbulent boundary layer and duct flows
D. A. Shah and R. A. Antonia

Reynolds number scaling of turbulent diffusivity in wall flows
Victor Yakhot

The fluctuating wall-shear stress and the velocity field in the viscous sublayer
P. Henrik Alfredsson, Arne V. Johansson, Joseph H. Haritonidis, and Helmut Eckelmann
A model for near-wall turbulence
Joseph H. Haritonidis

On the validity of Taylor’s hypothesis for wall-bounded flows
Ugo Piomelli, Jean-Louis Balint, and James M. Wallace

On the shape and dynamics of wall structures in turbulent channel flow
Yann G. Guezenneec, Ugo Piomelli, and John Kim

Stochastic estimation of coherent structures in turbulent boundary layers
Y. G. Guezenneec

Velocity–vorticity correlations related to the gradients of the Reynolds stresses in parallel turbulent wall flows
J. C. Klewicki

Forces acting on a low-velocity region within a turbulent boundary layer
Alan L. Kistler and Theodore Markis

The outer region of a turbulent boundary layer
W. R. C. Phillips and J. T. Ratnanather

On the asymmetry of structures in turbulent boundary layers
W. C. Choi and Y. G. Guezenneec
Phys. Fluids A 2, 628 (1990)

On the space-time characteristics of wall-pressure fluctuations
Haecheon Choi and Parviz Moin
On the sign of the instantaneous spanwise vorticity component in the near-wall region of turbulent boundary layers
J. C. Klewicki, C. P. Gendrich, J. F. Foss, and R. E. Falco
Phys. Fluids A 2, 1497 (1990)

Similarity between turbulent kinetic energy and temperature spectra in the near-wall region
R. A. Antonia and J. Kim

Is intermittent motion of outer flow in the turbulent boundary layer deterministic chaos?
Yoshiyuki Tsuji, Katsuya Honda, Ikuo Nakamura, and Shinichi Sato

Spectral features of wall pressure fluctuations beneath turbulent boundary layers
Theodore M. Farabee and Mario J. Casarella

Convection velocity in supersonic turbulent boundary layers
Eric F. Spina, John F. Donovan, and Alexander J. Smits

Coherence and chaos in a model of turbulent boundary layer
Xiang Zhou and L. Sirovich

Structure of the velocity field associated with the spanwise vorticity in the wall region of a turbulent boundary layer
S. Rajagopalan and R. A. Antonia

Zero crossings of velocity fluctuations in turbulent boundary layers
P. Kailasnath and K. R. Sreenivasan
Statistical analysis of the dynamic equations for higher-order moments in turbulent wall bounded flows
J. Jovanović, F. Durst, and T. G. Johansson

Normalization based on the active motion in a turbulent boundary layer
R. A. Antonia, F. Anselmet, and L. Fulachier

Turbulent transport in wall-bounded flows. Evaluation of model coefficients using direct numerical simulation
J. B. Cazalbou and P. Bradshaw

A note on turbulent energy dissipation in the viscous wall region
Peter Bradshaw and J. Blair Perot

On the relation of near-wall streamwise vortices to wall skin friction in turbulent boundary layers
Arthur G. Kravchenko, Haecheon Choi, and Parviz Moin

Vortical motion contributions to stress transport in turbulent boundary layers
J. C. Klewicki, J. A. Murray, and R. E. Falco

Flow visualization of the three-dimensional, time-evolving structure of a turbulent boundary layer
José E. Goldstein and Alexander J. Smits

On the generation of turbulent wall friction
Paolo Orlandi and Javier Jiménez
Phys. Fluids 6, 634 (1994)

On the structure and control of near wall turbulence
Javier Jiménez
Interaction of adjacent bursts in the wall region
B. D. Coller, P. Holmes, and J. L. Lumley
Phys. Fluids 6, 954 (1994)

Fluctuation spectra and variances in convective turbulent boundary layers: A reevaluation of old models
A. M. Yaglom

Streamwise structures in a turbulent supersonic boundary layer
M. Samimy, S. A. Arnette, and G. S. Elliott

Wall turbulence closure based on classical similarity laws and the attached eddy hypothesis
A. E. Perry, I. Marušić, and J. D. Li

Energy transfer in numerically simulated wall-bounded turbulent flows
J. Andrzej Domaradzki, Wei Liu, Carlos Härtel, and Leonhard Kleiser
Phys. Fluids 6, 1583 (1994)

L. Sirovich and X. Zhou

G. Berkooz, P. Holmes, J. L. Lumley, N. Aubry, and E. Stone
Phys. Fluids 6, 1574 (1994)

A comparison study of conditional-sampling methods used to detect coherent structures in turbulent boundary layers
Y. M. Yuan and M. R. Mokhtarzadeh-Dehghan
Phys. Fluids 6, 2038 (1994)
Anisotropy of the dissipation tensor in a turbulent boundary layer
R. A. Antonia, L. Djenidi, and P. R. Spalart

Reynolds number similarity of orthogonal decomposition of the outer layer of turbulent wall flow
Z.-C. Liu, R. J. Adrian, and T. J. Hanratty
Phys. Fluids 6, 2815 (1994)

Funnel-shaped vortical structures in wall turbulence
D. Kaftori, G. Hetsroni, and S. Banerjee
Phys. Fluids 6, 3035 (1994)

The enstrophy equation budget of bounded turbulent shear flows
Joseph J. Gorski, James M. Wallace, and Peter S. Bernard
Phys. Fluids 6, 3197 (1994)

The fractal aspect of an isovelocity set and its relationship to bursting phenomena in the turbulent boundary layer
Yoshiyuki Tsuji and Ikuo Nakamura

Quadrant analysis in a heated-wall supersonic boundary layer
J. Deleuze, N. Audiffren, and M. Elena
Phys. Fluids 6, 4031 (1994)

On the existence of uniform momentum zones in a turbulent boundary layer
Carl D. Meinhart and Ronald J. Adrian

Viscous sublayer flow visualizations at $R \theta \approx 1 \times 10^6$
J. C. Klewicki, M. M. Metzger, E. Kelner, and E. M. Thurlow

Comparative measurements in the canonical boundary layer at $Re \delta \leq 6 \times 10^4$ on the wall of the German-Dutch windtunnel
H. H. Fernholz, E. Krause, M. Nockemann, and M. Schober
Subgrid-scale energy transfer and near-wall turbulence structure
Ugo Piomelli, Yunfang Yu, and Ronald J. Adrian

A low-shear turbulent boundary layer
Jennifer Hamelin and Amy E. Alving

Hierarchical order in wall-bounded shear turbulence
Fernando Carbone and Nadine Aubry
Phys. Fluids 8, 1061 (1996)

Probability density function and Reynolds-stress modeling of near-wall turbulent flows
Thomas D. Dreeben and Stephen B. Pope

System identification and control of a turbulent boundary layer
Ruben Rathnasingham and Kenneth S. Breuer

Coherent vortex model for surface pressure fluctuations induced by the wall region of a turbulent boundary layer
Manhar R. Dhanak, Ann P. Dowling, and Chao Si
Phys. Fluids 9, 2716 (1997)

On the existence of uniform momentum zones in a turbulent boundary layer Similarity law for the streamwise turbulence intensity in zero-pressure-gradient turbulent boundary layers
I. Marusic, A. K. M. Uddin, and A. E. Perry

Convection velocities in a turbulent boundary layer
P.-Å. Krogstad, J. H. Kaspersen, and S. Rimestad

Scaling of the intermediate region in wall-bounded turbulence: The power law
G. I. Barenblatt and Alexandre J. Chorin
A large-scale control strategy for drag reduction in turbulent boundary layers
Wade Schoppa and Fazle Hussain

Reconstructing the flow in the wall region from wall sensors
Bérengère Podvin and John Lumley

Observed mechanisms for turbulence attenuation and enhancement in opposition-controlled wall-bounded flows
E. P. Hammond, T. R. Bewley, and P. Moin

Very large-scale motions in the outer layer
K. C. Kim and R. J. Adrian.

Probability density function in the log-law region of low Reynolds number turbulent boundary layer
Yoshiyuki Tsuji and Ikuo Nakamura

Intermittency and scaling laws for wall bounded turbulence
R. Benzi, G. Amati, C. M. Casciola, F. Toschi, and R. Piva

Space–time characteristics of the wall shear-stress fluctuations in a low-Reynolds-number channel flow
Sejeong Jeon, Haecheon Choi, Jung Yul Yoo, and Parviz Moin

Relationship between wall pressure and velocity-field sources
Peter A. Chang, Ugo Piomelli, and William K. Blake

A note on the overlap region in turbulent boundary layers
Jens M. Österlund, Arne V. Johansson, Hassan M. Nagib, and Michael H. Hites

Turbulent boundary layer control utilizing the Lorentz force
Timothy W. Berger, John Kim, Changhoon Lee, and Junwoo Lim
A linear process in wall-bounded turbulent shear flows
John Kim and Junwoo Lim

Comment on “A note on the intermediate region in turbulent boundary layers” [Phys. Fluids 12, 2159 (2000)]
Jens M. Österlund, Arne V. Johansson, and Hassan M. Nagib

A note on the intermediate region in turbulent boundary layers
G. I. Barenblatt, A. J. Chorin, and V. M. Prostokishin

Direct numerical simulation of turbulent thermal boundary layers
Hojin Kong, Haecheon Choi, and Joon Sik Lee

Velocity derivatives in the atmospheric surface layer at Reλ =104
M. Kholmyansky, A. Tsinober and S. Yorish

A comparative study of near-wall turbulence in high and low Reynolds number boundary layers
M. M. Metzger and J. C. Klewicki

On the role of large-scale structures in wall turbulence
Ivan Marusic
Phys. Fluids 13, 735 (2001)

Scaling the near-wall axial turbulent stress in the zero pressure gradient boundary layer
M. M. Metzger, J. C. Klewicki, K. L. Bradshaw, and R. Sadr
Phys. Fluids 13, 1819 (2001)

Reynolds number effects in the near-wall region of turbulent channel flows
M. Fischer, J. Jovanović, and F. Durst
Phys. Fluids 13, 1755 (2001)
Stochastic estimation and flow sources associated with surface pressure events in a turbulent boundary layer
A. M. Naguib, C. E. Wark, and O. Juckenhöfel
Phys. Fluids 13, 2611 (2001)

Experimental assessment of a new form of scaling law for near-wall turbulence
B. Jacob, A. Olivieri, and C. M. Casciola

Relationship between wall pressure fluctuations and streamwise vortices in a turbulent boundary layer
Joongnyon Kim, Jung-II Choi, and Hyung Jin Sung

Evaluation of the Barenblatt–Chorin–Prostokishin power law for turbulent boundary layers
Ronald L. Panton

Varicose instabilities in turbulent boundary layers
M. Skote, J. H. Haritonidis, and D. S. Henningson

Viscous effects in control of near-wall turbulence
Yong Chang, S. Scott Collis, and Srinivas Ramakrishnan

Some dynamical properties of a differential model for the bursting cycle in the near-wall turbulence
A. Porporato and L. Ridolfi

Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows
Koji Fukagata, Kaoru Iwamoto, and Nobuhide Kasagi

Power laws for turbulent boundary layer flow
Joseph B. Keller
Analysis of the small-scale structure of turbulence on smooth and rough walls
D. Poggi, A. Porporato, and L. Ridolfi

Control of turbulent boundary layers
John Kim

Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at $M = 2.25$
S. Pirozzoli, F. Grasso, and T. B. Gatski

Probability density function computation of turbulent flows with a new near-wall model
Marta Waclawczyk, Jacek Pozorski, and Jean-Pierre Minier

Publisher’s Note: “Probability density function computation of turbulent flows with a new near-wall model” [Phys. Fluids 16, 1410 (2004)]
Marta Waclawczyk, Jacek Pozorski, and Jean-Pierre Minier

Universality of probability density distributions in the overlap region in high Reynolds number turbulent boundary layers
Björn Lindgren, Arne V. Johansson, and Yoshiyuki Tsuji

Assessment of inflow boundary conditions for compressible turbulent boundary layers
Sheng Xu and M. Pino Martin

On turbulent energy production in wall bounded flows
R. Gurka, G. Hetsroni, A. Liberzon, N. Nikitin, and A. Tsinober

Flow field properties local to near-wall shear layers in a low Reynolds number turbulent boundary layer
J. C. Klewicki and C. R. Hirschi
Study of the motions contributing to the Reynolds stress in high and low Reynolds number turbulent boundary layers
P. J. A. Priyadarshana and J. C. Klewicki

Characterization of near-wall turbulence in terms of equilibrium and “bursting” solutions
Javier Jiménez, Genta Kawahara, Mark P. Simens, Masato Nagata, and Makoto Shiba
Phys. Fluids 17, 015105 (2005)

Statistical properties of vortical structures with spanwise vorticity in zero pressure gradient turbulent boundary layers
R. Camussi and F. Di Felice

Experimental investigation of vortex properties in a turbulent boundary layer
Bharathram Ganapathisubramani, Ellen K. Longmire, and Ivan Marusic

The role of coherent structures in subgrid-scale energy transfer within the log layer of wall turbulence
V. K. Natrajan and K. T. Christensen

A refined interpretation of the logarithmic structure function law in wall layer turbulence
P. A. Davidson, P.-Å. Krogstad, and T. B. Nickels

Stochastic simulation of Lagrangian trajectories in near-wall turbulence
A. M. Reynolds

The spatial relationships between dissipation and production rates and vortical structures in turbulent boundary and mixing layers
James Diorio, Douglas H. Kelley, and James M. Wallace
Reynolds number effect on the dissipation function in wall-bounded flows
F. Laadhari

Hairpin vortex organization in wall turbulence
Ronald J. Adrian

The effect of subgrid-scale models on the near wall vortices: A priori tests
Gwenaël Hauët, Carlos B. da Silva, and José C. F. Pereira

Asymptotic analysis of the constant pressure turbulent boundary layer
Thomas S. Lundgren

Statistical properties of streamwise velocity in a supersonic turbulent boundary layer
B. Ganapathisubramani

Dissipation equals production in the log layer of wall-induced turbulence
J. J. H. Brouwers

Response of a spatially developing turbulent boundary layer to active control strategies in the framework of opposition control
Mathieu Pamiès, Eric Garnier, Alain Merlen, and Pierre Sagaut

Self-consistent high-Reynolds-number asymptotics for zero-pressure-gradient turbulent boundary layers
Peter A. Monkewitz, Kapil A. Chauhan, and Hassan M. Nagib

Scaling of mixed structure functions in turbulent boundary layers
Boris Jacob, Carlo Massimo Casciola, Alessandro Talamelli, and P. Henrik Alfredsson
Local isotropy of the velocity and vorticity fields in a boundary layer at high Reynolds numbers
James M. Wallace and Lawrence Ong

Comparison of mean flow similarity laws in zero pressure gradient turbulent boundary layers
Direct intervention of hairpin structures for turbulent boundary-layer control
Yong-Duck Kang, Kwing-So Choi, and Ho Hwan Chun

A filtered-wall formulation for large-eddy simulation of wall-bounded turbulence
Amitabh Bhattacharyya, Arup Das, and Robert D. Moser

A proper-orthogonal-decomposition–based model for the wall layer of a turbulent channel flow
Bérengère Podvin

Turbulent boundary layers up to $Re_\theta = 2500$ studied through simulation and experiment
Phys. Fluids 21, 051702 (2009)

Near-wall similarity between velocity and scalar fluctuations in a turbulent channel flow
Hiroyuki Abe and Robert Anthony Antonia
Phys. Fluids 21, 025109 (2009)

Effects of large-scale free stream turbulence on a turbulent boundary layer
N. S. Sharp, S. Neuscamman, and Z. Warhaft

Comparison of large-scale amplitude modulation in turbulent boundary layers, pipes, and channel flows
Romain Mathis, Jason P. Monty, Nicholas Hutchins, and Ivan Marusic
Phys. Fluids 21, 111703 (2009)
Evolution and lifetimes of flow topology in a turbulent boundary layer
G. E. Elsinga and I. Marusic

Designing large-eddy simulation of the turbulent boundary layer to capture law-of-the-wall scaling
James G. Brasseur and Tie Wei

Transitional and turbulent boundary layer with heat transfer
Xiaohua Wu and Parviz Moin

A numerical study of compressible turbulent boundary layers
M. Lagha, J. Kim, J. D. Eldredge, and X. Zhong
Phys. Fluids 23, 015106 (2011)

On the fluctuating wall-shear stress in zero pressure-gradient turbulent boundary layer flows
Ramis Örlü and Philipp Schlatter

Inner/outer layer interactions in turbulent boundary layers: A refined measure for the large-scale amplitude modulation mechanism
Matteo Bernardini and Sergio Pirozzoli

Experiments in Fluids (1983 - Present)

Measurements of some features of turbulence in wall-proximity
R. S. Azad and S. Burhanuddin
Experiments in Fluids, 1983, Volume 1, Number 3, Pages 149-160

Influence of Reynolds number on characteristics of turbulent wall boundary layers
J. Andreopoulos, F. Durst, Z. Zaric and J. Jovanovic
Experiments in Fluids, 1984, Volume 2, Number 1, Pages 7-16
Wall pressure and its relation to turbulent structure of a boundary layer
Y. Kobashi and M. Ichijo
Experiments in Fluids, 1986, Volume 4, Number 1, Pages 49-55

Streamwise pseudo-vortical structures and associated vorticity in the near-wall region of a wall-bounded turbulent shear flow
N. Kasagi, M. Hirata and K. Nishino
Experiments in Fluids, 1986, Volume 4, Number 6, Pages 309-318

Three-component LDA measurements in a turbulent boundary layer
O. Özcan
Experiments in Fluids, 1988, Volume 6, Number 5, Pages 327-334

Comparison between outer regions of turbulent boundary layer and channel flows
M. Teitel and R. A. Antonia
Experiments in Fluids, 1991, Volume 11, Numbers 2-3, Pages 203-204

The structure of Reynolds stress in the near-wall region of a fully developed turbulent pipe flow
P. -A. Chevrin, H. L. Petrie and S. Deutsch
Experiments in Fluids, 1992, Volume 13, Number 6, Pages 405-413

RMS spanwise vorticity measurements in a turbulent boundary layer
S. Rajagopalan and R. A. Antonia
Experiments in Fluids, 1993, Volume 14, Numbers 1-2, Pages 142-144

The use of orthogonal X-wire arrays for structure investigation in a turbulent boundary layer
P-Å. Krogstad, R. A. Antonia and L. W. B. Browne
Experiments in Fluids, 1993, Volume 15, Numbers 4-5, Pages 231-239

Three-component, time-resolved velocity statistics in the wall region of a turbulent pipe flow
A. A. Fontaine and S. Deutsch
Experiments in Fluids, 1994, Volume 18, Number 3, Pages 168-173
Low-Reynolds-number effects in a turbulent boundary layer
C. Y. Ching, L. Djenidi and R. A. Antonia
Experiments in Fluids, 1995, Volume 19, Number 1, Pages 61-68

Analysis of two-point velocity measurements in near-wall flows
G. P. Romano
Experiments in Fluids, 1995, Volume 20, Number 2, Pages 68-83

Reynolds-number-dependence of the maximum in the streamwise velocity fluctuations in wall turbulence
S. Mochizuki and F. T. M. Nieuwstadt
Experiments in Fluids, 1996, Volume 21, Number 3, Pages 218-226

Effects of imperfect spatial resolution on turbulence measurements in the very near-wall viscous sublayer region
B. C. Khoo, Y. T. Chew and G. L. Li
Experiments in Fluids, 1996, Volume 22, Number 4, Pages 327-335

Advantages of using a power law in a low R\(\theta\) turbulent boundary layer
L. Djenidi, Y. Dubief and R. A. Antonia
Experiments in Fluids, 1996, Volume 22, Number 4, Pages 348-350

Near-wall structure of three-dimensional turbulent boundary layers
K. A. Flack
Experiments in Fluids, 1997, Volume 23, Number 4, Pages 335-340

Conditional correlation between a passive scalar and its dissipation in a turbulent boundary layer
A. Benaissa, J. Lemay and F. Anselmet
Experiments in Fluids, 1999, Volume 26, Number 6, Pages 488-496

Three-dimensional visualization of large structures in the turbulent boundary layer
J. W. Hoyt and R. H. J. Sellin
Experiments in Fluids, 2001, Volume 30, Number 3, Pages 295-301

Some Reynolds number effects on two- and three-dimensional turbulent boundary layers
Experiments in Fluids, 2001, Volume 31, Number 2, Pages 219-228
Quantitative visualization of the near-wall structures in a turbulent pipe flow by image correlation velocimetry
K. S. Hwang, G. X. Cui, Z. S. Zhang and B. C. Feng
Experiments in Fluids, 2002, Volume 32, Number 4, Pages 447-452

PIV study of the influence of large-scale streamwise vortices on a turbulent boundary layer
G. Di Cicca, G. Iuso, P. Spazzini and M. Onorato
Experiments in Fluids, 2002, Volume 33, Number 5, Pages 663-669

Propagation of shear-layer structures in the near-wall region of a turbulent boundary layer
L. Labraga, B. Lagraa, A. Mazouz and L. Keirsbulck
Experiments in Fluids, 2002, Volume 33, Number 5, Pages 670-676

Measurements and scaling of wall shear stress fluctuations
K. J. Colella and W. L. Keith
Experiments in Fluids, 2003, Volume 34, Number 2, Pages 253-260

Investigation of the spatio-temporal flow structure in the buffer region of a turbulent boundary layer by means of multiplane stereo PIV
C.J. Kähler
Experiments in Fluids, 2004, Volume 36, Number 1, Pages 114-130

Unsteady wall-shear measurements in turbulent boundary layers using MEMS
J.-D. Ruedi, H. Nagib, J. Österlund and P.A. Monkewitz
Experiments in Fluids, 2004, Volume 36, Number 3, Pages 393-398

Smooth and rough turbulent boundary layers at high Reynolds number
Luciano Castillo, Junghwa Seo, Horia Hangan and T. Gunnar Johansson
Experiments in Fluids, 2004, Volume 36, Number 5, Pages 759-774

Outer flow scaling of smooth and rough wall turbulent boundary layers
O. G. Akinlade, D. J. Bergstrom, M. F. Tachie and L. Castillo
Experiments in Fluids, 2004, Volume 37, Number 4, Pages 604-612
Investigation of a turbulent spot and a tripped turbulent boundary layer flow using time-resolved tomographic PIV
Andreas Schröder, Reinhard Geisler, Gerrit E. Elsinga, Fulvio Scarano and Uwe Dierksheide
Experiments in Fluids, 2008, Volume 44, Number 2, Pages 305-316

Stereoscopic PIV measurements of a turbulent boundary layer with a large spatial dynamic range
Sophie Herpin, Chong Yau Wong, Michel Stanislas and Julio Soria
Experiments in Fluids, 2008, Volume 45, Number 4, Pages 745-763

Quantitative characterization of coherent structures in the buffer layer of near-wall turbulence. Part 1: streaks
J. Lin, J. P. Laval, J. M. Foucaut and M. Stanislas
Experiments in Fluids, 2008, Volume 45, Number 6, Pages 999-1013

Double large field stereoscopic PIV in a high Reynolds number turbulent boundary layer
Experiments in Fluids, 2011, Volume 50, Number 1, Pages 1-12

Full 3D correlation tensor computed from double field stereoscopic PIV in a high Reynolds number turbulent boundary layer
Jean-Marc Foucaut, Sebastien Coudert, Michel Stanislas and Joel Delville
Experiments in Fluids, 2011, Volume 50, Number 4, Pages 839-846

Eulerian and Lagrangian views of a turbulent boundary layer flow using time-resolved tomographic PIV
Experiments in Fluids, 2011, Volume 50, Number 4, Pages 1071-1091

A study of the three-dimensional spectral energy distribution in a zero pressure gradient turbulent boundary layer
J. LeHew, M. Guala and B. J. McKeon
Experiments in Fluids, Online First™, 23 May 2011
On coherent-vortex identification in turbulence
Yves Dubief & Franck Delcayre (2000) 1

Active control of streak structures in wall turbulence using an actuator array producing inclined wavy disturbances
Takehiko Segawa , Yasuo Kawaguchi, Yoshihiro Kikushima & Hiro Yoshida (2002) 1

The velocity and acceleration signatures of small-scale vortices in turbulent channel flow
Kenneth T Christensen & Ronald J Adrian (2002) 3

The effects of the upstream conditions on a low Reynolds number turbulent boundary layer with zero pressure gradient
Luciano Castillo & T Gunnar Johansson (2002) 3

Reynolds stress in turbulent boundary layers at high Reynolds number

Dynamics of fine scale eddy clusters in turbulent channel flows
Shin-Jeong Kang, Mamoru Tanahashi & Toshio Miyauchi (2007) 8

Anisotropy of a turbulent boundary layer

Experimental analysis of a turbulent boundary layer at high Reynolds numbers
Giovanni Aloisio, Fabio Di Felice & Giovanni P. Romano (2009) 10

Two-point correlations in high Reynolds number flat plate turbulent boundary layers

Chasing eddies and their wall signature in DNS data of turbulent boundary layers
Clara O'Farrell & M. Pino Martín (2009) 10

The organization of near-wall turbulence: a comparison between boundary layer SPIV data and channel flow DNS data
Multiscale edge detection and imperfect phase synchronization of the wall turbulence
Sedat Tardu (2011) 12