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Landmarks of Turbulent Boundary Layer Research

Pre — 1961
Development of Hot-wire anemometry & measurement of statistical properties.

1960s
Visualization identifying organized (coherent) structures related to turbulence
production.

1970s
Conditional sampling and averaging methods (quadrant analysis, VITA, etc.) developed to
quantify properties and effects of organized structures.

1980s

First DNS of turbulent channel and boundary layer flows providing full spatial field
properties and access to 3D structural information. First experimental measurements
of velocity gradient tensor based properties: vorticity, dissipation rate, etc.

1990s

Development of better methods to identify vortices. Implementation of planar PIV providing
new insights to flow structure. Development of field sites for experiments in the ASL at very
high Reynolds numbers. Development of high Reynolds number laboratory facilities.

2000s
DNS at significantly higher Reynolds numbers and supersonic Mach numbers. Use of
stereo-, tomographic- & holographic-PIV to provide additional insight about flow structure.

2010s
DNS for much higher Reynolds numbers and hypersonic flow (Rey ~ 11,000 & Mach ~ 12).
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Fig. 12. Eddy structure.

- Fluctuating
U = Us potential flow

-3
Ld

Figure 20.- Intermittency distributions for several x-stations in boundary
layer.

Corrsin & Kistler (1954) NACA TN 3133
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Klebanoff (1955) NACA Rep. 1247

Productbon sl dissipation i region near wall,
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1961 — 1970: Visualization & Measurement

St
Fraure 6. Longitudinal space-time corvelation of the wall pressure displayed in three dimensions using the data of figure 5.

Willmarth & Wooldridge (1962) JFM 14

Bakewell & Lumley (1967) Phys. FI. 10



Hydrogen Bubbles

Frovpe 105, g% w 43

Frovne 10, Photographs of the structure of & flat plate turbulent bowndary layer,

Kline, Reynolds, Schraub & Runstadler (1967) JFM 30 Light

View Multi-media Fluid Mechanics
videos 4192, 4497 & 4766 in the
Media Library

Lathe bed

W

Fiourz 2. Optical system.

Frouvxe 3. Wall view (dimensions for x 4-3).

Corino & Brodkey (1969) JFM 37



1970 — 1986: Conditional Processing of
Measurements & Further Visualization
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VITA Conditional Sampling
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1986 — 2011: DNS, Multi-Sensor Hot-Wire Probes & PIV Measurement
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Froume 156 Vortex llnn of an instantancous vortical struoture detocted by QD.2: ).
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Frovre 18 Velocity vectors in & (y. :) plane. The streamwise location s indicated in
figure 15(8), and the direction of the mean fSow is into the figure
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Frovke 19, Vorticity contours, B, = 1410, (a) streamwise plane; (b) spanw n-'rlun. (¢) downstream plane, at 45
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Frovre 10. Measured turbulent kinetic energy production and dissipation rates normalized with
inner scaling w, and » and compared to other measured and simulated values. Symbols given in
table 2 except for o, dissipation neglecting cross-product velocity gradient correlations and &,
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Fiours S. Plan view of complete set of vortices visualized using approximate core dimensions. Dark
have negative ise vorticity, light have positive ise vorticity.

Ficuxx 5. Quadrant breakdown of the p.d.f. of particle displacement at y* = 12.0: (a) Q1 ;

Figure 20. Ejection cvent in figure 19 viewed from cad-on velocity vector plot

(5) Q2: (c) Q3:; (d) Q4; (e) total.
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—p’ : low pressure

choose pressure contour value

low pressure

Robinson (1990)

upright narpin
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QUANFAT ENTIWSS VOrDs

igure ¢ Vartaty lmes traced from cither side of a quasi-streamwise vortex in a boundary

Figure 136 Conceptual model of the Kinematical relaticnships between (1) ejectionfswosp ayer, showing upeight- and inverted-hairpin shapes.

motions and quasi-streamwise vortices in the near-wall region and (2) cection sweep motions
and arch-shaped vortical structures in the outer region. Model proposed for low-Reynokls
number boundary layers (from Robinson 1990).
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Froume 3, Friction coefficient in a zero-pressure-gradient boundary layer versus momentum-
Hot wires iaclined 25 um thickness Reynolds number. Experimental data is from Coles & Hirst; solid line is present model.
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frr4mad Tungsten prong 6
~25 um at the tip

Tsinober, Kit and Dracos (1992) JFM 242

The exact Reynolds stress transport equation can be written

— U, — 2 —
D, uu; = ;,,+Pu-%c—(‘,u,u,u,—jzﬁ,,e.u,p+vw

Intensitics
D e T T S |

where By =~ &, U=t 2, U, ,
is the rate of turbulence production by mean velocity gradients, o
¥
1 1 2 — o, : :
S vy I el —e 4 M Fioune 4. Profiles of k (@), # (x) and —8r (<) at R_ = 7150 in a 2ero-pressure-gradient
fu =TGP~ M CP T8 Tt Pyt e boundary layer. Experimental data were transcribed from Kiebanoff
Tensorially consistent near wall 2"9 order closure model Durbin (1993) JFM 249

without ad hoc damping functions



(a) Upper wall Streamwise voriex T
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FiGure 14, Root-mean square vorticity fluctuations normalized by the wall-shear velocity in global
coordinates: -, no control; —~——, s-control; -+ , wcontrol. Note that y/4 = — | corresponds
10 the lower location.
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Figume 13, Predictions of near-wall temperature fluctuations mssocinted with the key flow patterns
v using the autoregressive (AR) model: . measurements; = = = = AR model prediction. (a)
ST of turbulent motions in the near-wall region (y* = 18.5). (a) (k. H) = (0, 0), Q2-Q1-Q4: (b) Q2-Q1-Q4: () Q4-Q1-Q2: () Q4-Q3-Q2; (o) QX-Q2-Q).

2 . Trajectories
Nuws = T2, (B} (h, H) = (025, O), Ny = 4155; (c) (h, H) = (025, 1.07), Ny = 3267.

Nagano & Tagawa (1995) JFM 305
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FIGURE 2. Top view of the isosurfaces of 2; = —0.03 in the range 0 < p*" < 60.
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Figure 13. Coberent Reynolds stresses at x = 0 in E1: (@) —(u— U){e) for SP, contour levels =
(0.3, —0.534, 1.94); (b) —(v)(w) for SP. contour levels = (0.2, —0.868, 1.22); (¢) —(u— U){w) for SP,
contour levels = (0.7, —1.34, 423): (d) —{u— U){w) for SN. Relative locations of Q1, Q2, Q3 and

Q4 events with respect to the CS center are shown in (a).

(@)

FIGURE 14. (g) Vortex lines traced outside CS

(a)
Low-speed streak ~ .

111

.0

Figure 10. Conceptual model of an array of CS and their spatial relationship with experimentally
observed events discussed in the text: (a) top view: (#) side view; (¢) structures at cross-section FG
in (a): (d) expanded views of structures C and D in (a.b), showing the relative locations of Q1, Q2,
Q3, Q4, E and H. A schematic demonstrating the counteracting precession of SN in the (x, z)-plane
due 10 background shear is shown in (el The arrows in (b) denote the sections of figure Na-¢).

Schoppa & Hussain (2002) JFM 453
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FIGURE 30. (a). Angular orientation of vorticity vector and definition of quadrants on vertical and
konizontal planes. (b) Probability density function of vorticity vector orientation angle 6 in the (x,,
x,)-plane at x; = 12.5, for threshold levels 0, 0.5 and 1. r.m.s. of w, and for w,. (c) Probahelity density
function of vorticity vector orientation angle ¢_in the (x,, x,)-plane at x; = 12.5, for threshold levels
0,0.5 and 1 r.m.s. of w, and w,.
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RGURE 15, Projections of vortiaty filament segments making the largest contnbutions 10 2,09,
0.0 and 2,02, a1 " = 20, 35 and 89. (@) Projection on (x.v)-plane where 0 = 1an '(2,/9,):
-05 s 0 s Oy = 58°(or — 1187) a1 ' = 20, (s = 48" (or — 1367) al y' = 35 and Oy = 48" (or — 1377)
Q. al v' = 89 (b) Projection on (x.z)-plane where 7 = tan (2, /02.): vy = 4167, s = 427" and
7oy = 242° (c) Projection on (v, z)-plane where ¢ = lan 82, /00.): dap = 427", Pye = 435" and
HGURE 11. {a) JPDFs and (b) covanance integrands of 2, and 2,. non-dimensionalized by v/ul. All Pys = 37,

vorheily and veloaly gradsents are normahzed by this ime scale here and i the lollowing ligures.
Contour increments (for y' = 20, 35 and 89, respectavely) are (a) 3.3, 4.5, 9.0 and (b) 3.4 x 10",
29 x 10°°, 1.4 x 107", The outer conlouss are one increment above zero.
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FGURE 16. {a) The experniments of: %, Erm & Joubert (1991): CL Smath (1994); <4 Krogstad &
Antonia (1998); and &, Petnie ¢ al. (1990). (b) ¥V, The data of Winter & Gaudet (1973). (c) *, The
data of Bruns er al. (1973) and Fernbolz e al. (1995). (d) The data of all expeniments excepl of
those by Naguib (1992) and Nagib & Hites (1995), Bruns ef al. (1992) and Fernholz et al. (1995):
Q, Collins et al. (1978); &, Petne et al. (19%0); <+, Erm (1988); O, Putell er al. (1981); *, Djemdh &
Antona (1993); x, Warnack (1994); <, Krogstad & Antoma (1998); V., Winter & Gaudet (1973)
All the data i (a-d) collapse on the bisectnx ol the first quadrant in accordance with the umversal
form (14) of the scahng law (5). (¢) (1) The data of Nagwb (1992) and Nagib & Hites (1995)
show a systematic deviation (rom the buisectrix of the lirst quadrant. (n) The data of Krogstad &
Antoma (1998) related to rough walls: the expenimental points lse much lower than isecine For
the evaluation of y the value 2 = 3/2In Re; was taken (f) The data of Hancock & Bradshaw
(1989) show the parallel shaft from the bisectnx of the same order as in the expenments by Nagb
& Hites: @, Nagmb & Hiles; . Hancock & Bradshaw, o /U = 0.0003, 0,024, 0.026; =, Hancock &
Bradshaw, o /U = 0.040, 0.4M1; O, Hancock & Bradshaw, o' /U = 0058,
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FIG. 2. Joint PDE'scatter plot of enstrophy productson, ayo,r, . vensus the
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Foure 22 Turbulent kinetic enmergy budget:
Rey = 1410; — — Spalart’s data Rey = 670. Symbols are: €. Convective term; P, Generation
term; T, Turbulent transport; /7, Pressure terms; D, Viscous transport: —¢. Viscous dissipation.
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Foure 10, (@) Schematic of a harpin vorlex allached to the wall and the mduced motion
(b) Srgnature of the hairpin vortex m the streamwise-wall-normal plane. The
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recordmg system. The streamwise-wall-normal plane of
a zero-pressure-grachent boundary laver s illuminated by a vertical laser hght sheet and imaged by

a5, U,
-
v

»* bRl S
a

\-
PIV TS

La s
4m xSin ) ) .
Photographse ° 03 04 0.6
film - ) .

W

Rey = 1410,

200

FiGUuRE 11. Near-wall realization atl Re, = 930 showmng four haxrpin vortex signatures ahgned mn
the st d 1 velocity vectors are viewed 1n a [rame-of-reference moving
al U, = 0807, and scaled with mner vanables. Vortex beads and inchned shear layers are indicated
schematically, along with the elements tnggenng a VITA event.

FIGURE 7. Rool-mean-square spanwise vorticaly scaled and plotted with outer vanables B, Re, = 930;
A, 2370; @, 6845; V, Bahnt ef al. (1991); <, Klewicks (1989) Rey = 2870; — + —, Spalart (1988)
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Figure 14, Realmzatson of the Rey = 930 boundary layer showmg harpmn vortex heads along
the boundaries sey g regons of umlor flwd. The black hines separate the fow
field nto zones, labelled 1, 1T and 1L = which the 15 nearly :a)
mstantaneous veloaily vector map viewed in a convecting frame of reference U, = 08U, and scaled
with mner vanables, (b) of

Adrian, Meinhart & Tompkins (2000) JFM 422
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FGURE 7. Tune-averaged Reynolds-shear-stress (v's”) generating events assoctated with the four
FIGURE 5. Top view of the computational domiun showing regions of posttive dscriminant and incompressible flow patterns. Data taken from the entire boundary layer.
therr spatial association with Reynolds stress events (u'v').
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Fraure 22. Examples of accepted eddy structures in the (e, e, )-plane at R, = 7500. -50 [ 0 -50 [ “«
v
FiGure 25, Averaged eddy structures in the (e, e,) normal to the wall plane at R ——
(e,.e,) (e..e,) le..e.) le. eyl vt =50, 75, 100 and 125 (clockwise from the top left-hand side). The grey scale
R v v, v v, v V. v V. out-of-plane component. e 2
7500 3613 1726 2386 23493 10979 10871 800 822
10 500 - - 296 2123 - - 586 6349
13500 - - 2423 2408 - - 852 832
19000 - - 2303 2342 - - 756 769
TapLe 6. Number of eddy structures detected. FiGure 10. Orientations of the various planes used in the two series of PIV measurements:
Lofev.e)i 2, (ev,e0); 3, (e, en)s 4, (e, 00); 5, (e, ea).
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FiGure 30. Mean vorticity profiles of eddy structures: V, (e, e,)-planc and Ry =7500; 0.04
*, (e, e)planc and R, =7500; O, (e, e, )-planc and R, =10500; A, (e.. e, )-planc and ol - n . . . - . . 0
R; =13500; 0, (e,, e,)-planc and R; = 19000; - - -, rm.s spanwise vorticity; ———, Van Driest —400 <300 200 100 0 100 200 300 400
profile. dz*

Carlier & Stanislas (2005) JFM 535

FGure 34, Probability map of the location of ejection compared to positive eddy structure
and positive eddy structure compared to ejection at y* =30 and Ry, = 7500 in the (e, e, )-plane.
|ar) Fixed point positive eddy structure; moving point, ejection. (b)) Fixed point, ejection; moving
point, posative eddy structure.
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RGure 4. (@) Example of rake signal at z /5 =0.15 for Re, = 14 380. The x-axis is reconstructed
using Taylor’s hypothesis and a convection velocity based on the local mean, U=159ms™ "
() Typical PIV frame for comparison at Re, = 1100, z /5 =0.087. Shading shows only negative
w fluctuations (see grey-scale).

Hutchins & Marusic (2007) JFM 579
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Figure 7. Instantaneous flow fields from Re, =934 channel simulations (del Alamo et al.
2004). Shading shows v fluctuations (a) at z* =130 (b) at ¥ =15 (see upper grey-scale). Plots =
{¢) and (d) show the filtered data at the same respective heights (shading shows negative i
fluctuations, grey-scale as figure 4).

Del Alamo, Jimenez,
Zandonade & Moser (2004) JFM 500
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FiGure 7. Instantaneous visualization connecting the large-scale low-speed regions with
hairpin packets: see text for description

FiGure 5. Hairpin packet from figure 4 visualized using an iso-surface of 2, =3.5.,. The . .

(x, z)-plane data of figure 4 are included at 30% translucency for reference. Portions of the R"‘Iguette, Wu & Martln (2008) JFM 594 (@ e,

packet hairpins not obscured by the reference plane have been coloured red.
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FiGURE 3. Perspective view of coherent structures in the boundary layer (21 = 5w’ /&7).
(a—¢) Enlargements of corresponding parts in the main figure.
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FGure 7. Scaled joint pd.f. of vortex orientation (F(a 6,)) for various vortex oricatation
criteria. (@) @-criterion; (b) ¥, -criterion; (¢) §,-criterion. Twcm)-four equally spaced contour
levels from 107 to 104 [gn:y shades indicate larger values). (i) Viscous + buffer layer (y* < 40).
(ii) Log-layer + wake (y* =40).
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Pirozzoli, Bernadini & Grasso (2008) JFM 613
(2010) JFM 648a

0 0 &0 80 100

FiGure 12, Distribution of turbulence kinetic energy (a), turbulent shear stress (b) and
enstrophy (¢) as a function of wall distance in wall units: DNS (——); strong vorticity T

events (----); vortex sheets (- - - - - ); vortex tubes (———-); ‘roll-up’ events (-+++- ). FIGURE 3. Iso-surfaces of tubes strength (/o =2, dark grey) and sheets strength

(o, /e’ =2, light grey) projected onto the x—y and x-z planes.
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RGure 5. Example of large-scale decomposition on the fluctuating w velocity signal: as b
(@) inner-peak location ™ =15; (b) outer-peak location z/8=0.06; (I) raw signals, with
37% of correlation; (II) large-scale components, with 72 % of correlation. Dashed vertical 04
lines show region of negative large-scale u), fluctuation. )
0z
k0

FIGURE 1. Pre-multiplied energy spectra of streamwise velocity fluctuation k. /U2
(Re. =7300). (a) Three 4dim:nsiml surface plot for all wall-normal locations and

(b) isocontour representation in which levels are from 02 to 1.8 in steps of 02: the

horizontal dot-dashed line in (k) shows the location of the spectral filter (4, =4).

o
symbols mark the inner (z* =15, 2/ =1000) and outer (z/8=0.06, i /§=6) peaks. The

Mathis, Hutchins & Marusic (2009) JFM 628 -
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RAGure 13. Comparison of corrclation cocfficient between the large-scale component and
the filtered envelope of the small-scale component: (a) R plotted in inner-scale ™ unit;

(&) R plotted in outer-scale z/3 unit.
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FGure 8. Wall-normal evolution of the degree of amplitude modulation: () pre-multiplicd
energy spectra of the streamwise velocity fluctuation ke /U7 : (b) correlation coefficient Rz ')
between the large-scale component and the filtered envelope of the small-scale component;
(¢) mean velocity profile; Re, =7300.
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ure 2. Growth parameters of the present boundary layer with free-stream passing wakes.
es are DNS results. Dotted, 1077°3/4,; dashed, 10" x/4;: solid, 4 ; dash-dotted, 10" Re,.
s, Blasius solutions; diamond, Purtell, Klebanoff & Buckley (1981); circle, Adrian er al.
00); square, DeGraaff & Eaton (2000).
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mparison of structures resolved using @ and temperature over 1550 <
the boundary layer with passing wakes at 1 =465 . Iso-surfaces are coloured
wes of ¥, (a) Q=0and (b) ¢=0.05.

Wu (2010) JFM 664

Figure 17. Zoomed view of the highlighted near-wall small structure in figure 16 overlaid
with local instantancous vortex lines. Iso-surfaces are coloured using y*.

FIGURE 15. Zoomed view of the highlighted hairpin structure in figure 14 overlaid with local
instantancous vortex lines. (a) Q =0 and (b) ¢ =0.05.
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FGure 7. Conditionally averaged three-dimensional flow structure and wall stress based on a
local stress minimum, 1., <0.6{x,,), atx* =z~ =0. (a) Isosurface of J; =
vortex lines and distribution of £]7"(Ax, 0. Az)/(r,,). (b) Conditionally averaged near-wall
vortex lines and distribution of £57(Ax, 0, Az)/(r,,). Insert: x—y projection of the vortex

lines.

—350, selected (blue)

| FiGure 21. A conceptual model illustrating the process of spanwise vortex lifting and the
! resulting formation of & counter-rotating vortex pair, regions with wall stress extremes and
U

tegion.
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Figure 2. (a) Instantaneous vortex distribution detected by the @ criterion (green) and

low-speed zones (blue, u < 0.800,) for 0.15 < y /3 < 0.47. (b) A contour plot of the u component
of velocity at y/5=0.20.
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RGure 6. Conditional eddy (a,b) given a negative spanwise swirling event at y/3=0.33
visualized using the Q vortex detection criterion (green) and low velocity region (blue, &' < u))
with corresponding velocity vector plot in the x, y plane at r, =0 and x, = cross-sections
at y/§=0.2 (¢,d). The velocity vectors are relative to the eddy convective velocity w, at
¥/8=0.35 indicated in the upper left corner of cach plot. The dashed lines indicate & =0.
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FIG. 2. Mean velosity geofile U in viscous unils for (—) geesent DNS 81 o), (—) Present DNS a1 Re,=2512, (@) cxperiments #l Reg=2541, (== -)
Re, =671,1000,1412,2512, (@) present measurements 22 Re,=2581. Correlations based ca the attached-eddy hypothesis (Refs. 14-16)

(= — =) DNS by Spalat (Ref. 4) 81 Rey=670, 1410, The peoliles arc shifted

by U"«3 for increasing Rey The limear and logarithmic regions are indi

cated by a thin line, ssing 1/ xlog y'+ B with x=041 and B=5.2

Schlatter, Orlii, Li, Brethouwer, Fransson, Johansson, Alfredsson, & Henningson (2009) Phys. FI. 21
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FiGure 4. Near-wall behaviour of inner-scaled streamwise velocity fluctuation. (a) Value and
(B) wall-normal position of maximum. Corresponding channel-flow DNS values are depicted
in filled grey symbols (see figure 3b for references).

as function of the friction Reynolds number. Best fit to data by Komminaho & Skote (2002), Schlatter, Li, Brethouwer, Johansson &
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FiGure 3. (a) Typical section of || in the boundary layer, showing intermittent potential flow
deep into the vortical region. Re, = 700-900. (b) Probability density functions of the vorticity
magnitude in section BLS2, showing the development away from the wall of the irrotational
delta at lw|=0. . ¥[8 =044, L 0.39; , 0.88; o 1.31. The dashed vertical
line is the limit used to define irrotational flow, slightly larger than a single histogram bin.
() Intermittency factor. , BLS1 in the present simulation; ., BLS2; , BLS3; O,

FiGure 11. Isosurface of the discriminant of the velocity gradient tensor of the present
simulation. (a) Top view. (b) Perspective view. In both cases the flow is from left to right, and
the wall-parallel dimensions of the box are approximately 18 x 9 times the boundary-layer

from experimental velocity measurements at Re; = 3000 (K y, Kibens & Blackweld
1970); ~, from temperature measurements at Rep =1100-4800 (Murlis, Tsai & Bradshaw
1982).

(a)

at the centre of the box, spanning Res = 1420-1900. The isosurface is coloured by
the distance to the wall, from y/4 = 0.3-0.4 for the deepest blue, to y = § for the brightest red.
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FiGure 9. Instantaneous sections of the fluctuations in the boundary layer: u (@, b), v (¢, d),

w (e, ), p (g k) (a, c. e, g) The x—y sections, in

z—y sections at Rey = 1670, All the fluctuations are normalized with the x-dependent friction

velocity, and the coordinates are normalized with 35

dark arcas arc below —0.5 wall units, and the lighter ones above +0.5.
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Figure 6. (Colour online) Visualisation of vortices with high- and low-speed structures. Black
iso-surface: |Aq|ue = 0184 |mee. Blue iso-surface: us, = —0.1U. Red so-surface: uy,, =0.10.
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FiGure 1. Experimental set-up, showing the hot-wire array in the foreground with the 30 m
tower and sonic ancmometers in the background.
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same contours are plotted in the inset to compare with p,, at :,“, = 4032 plotted in figure 8.
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RAGure 8. Isocontours of the two-point correlation function pu(r). 27, 2,/) at 2, = 4032
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FiGure 21. (a. b) Numerical Schlicren visualization in & (x, z) plane for Mach 3 and Mach 12.
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Summary

U There has been remarkable progress in turbulent boundary layer research
in the past 50 years, particularly in understanding the structural organization
of the flow. Consensus exists that vortices drive momentum transport but not
about the exact form of the vortices or how they are created and sustained.

O This progress has been fueled by developments in experimental instrumentation
(multi-sensor hot-wire anemometry and PIV) but most of all with the advent of DNS
in the 1980s and its subsequent advances.

O Further progress has been made by the development of high Reynolds number
laboratory facilities and the use of field sites to study the very high Reynolds
number atmospheric surface layer under near neutral stability conditions.

O Challenges for the future:
- Incorporating the knowledge of the structure of turbulent boundary layers
into models, including RANS and subgrid scale LES models.

- Further extending the knowledge gained for zero pressure gradient, smooth
wall boundary layers to the complexities of accelerating and decelerating
boundary layers and flows with rough walls.

- Continuing to develop and implement methods to control turbulent boundary
layers that occur in real engineering applications.



Highlights of Fifty Years of Turbulent Boundary Layer Research
Pre - 1961

SLIDE 1
Title

SLIDE 2
Summary of periods and highlights by decades

SLIDE 3
Early hot-wire measurements. Some done in Delft by Burgers and co-workers even
earlier in the 20s.

SLIDE 4
Similarity laws for “overlap” and “wake” regions.

Millikan: “Law of the wall”
Coles: “Law of the wake”

SLIDE 5
Townsend: RMS distributions of velocity fluctuations and estimate of the TKE
balance from hot-wire measurements.

Corrsin & Kistler: “Superlayer” properties and intermittency function in TBL

Klebanoff: TKE production and dissipation rate estimates. All the determinations of
the dissipation rate from this period were crudely estimated as the residue of the
other terms.

SLIDE 6

Favre et al: Space-time isocorrelation contours with optimum time delay. Probes
were separated in both the streamwise and wall normal directions. Fixed probe at
about y+ = 40. Note high aspect ratio of correlation in x-y plane compared to y-z
plane. Note also that a small correlation remains all the way out to y = 0.34.

Grant: Spatial correlation tensor components at several locations of the fixed probe
in the boundary layer. He inferred structure from these correlations.

SLIDE 7

Willmarth & Wooldridge: Wall pressure space-time correlation function with two
probes of varying separation in the streamwise direction. One horizontal axis is
time and the other is downstream distance. The vertical axis is the correlation level.
The ridge flowing out to the lower right of the figure shows the cumulative effect of



eddies of different scale on the wall pressure with increasing time and distance. The
decay in correlation is interpreted as the increasing loss of the effect of smaller
eddies.

Bakewell & Lumley: Streamlines in the cross-stream plane of a pipe flow of glycerin
as revealed by proper orthogonal decomposition of hot-film data and their
suggested eddy structure.

SLIDE 8
Visual experiments that excited the research community about organized coherent
motions in wall bounded flows.

Kline et al.: Low-speed streaks revealed by hydrogen bubbles and their “bursting”.

Corino & Brodkey: “Ejection” and “sweep” coherent events revealed by particle
motion near the wall in a pipe flow viewed in a moving frame of reference.

1970 - 1986: Conditional Processing of Measurements & Further
Visualization

SLIDE 9
Kovasznay et al.: Intermittency function, point averages of “fronts” and “backs” of
potential flow bulges and a sketch of them.

SLIDE 10
Wallace et al.: Quadrant analysis of the Reynolds shear stress in a channel flow. Plot
of covariance integrand, uv dudv, by quadrant and as function of distance from wall.

Willmarth and Lu: Quadrant analysis for boundary layer with “hole” of constant Re
Stress to accentuate large amplitude events.

SLIDE 11

Several hundred small holes covered with a mirrored silicone rubber foil. Using
interferometry and a high speed movie camera, the instantaneous fringes on each
element were used to determine local wall pressure after calibration.

Figure shows pressure pulses being convected downstream over one row of
transducers. Patterns persist for more than 1100 viscous length scales (1% the
boundary layer thickness). Convection velocities are about 34 of the freestream
velocity.

SLIDE 12

Blackwelder and Kaplan: Intention was to detect turbulent “bursts” using Variable
Integral Time Averages (VITA) of conditionally sampled data. Condition was that
the local square of the streamwise velocity fluctuation minus the square of the local
mean be larger than some chosen threshold. This detected events with large du/dt.



The double peaks in the conditional averaged Re stress are roughly related to the Q2
and Q4 quadrants. Simultaneous rake measurements show that these events have
great coherence in the wall normal direction.

Chen & Blackwelder: Passively heated wall and a rake of X-array hot-wires. Highly
coherent ramps in the temperature fluctuations were observed. Conditioning on
these ramps, conditional velocity fluctuation averages were obtained that show the
outward motion of warmer, lower momentum fluid downstream of the front
followed by inward motion of cooler, higher momentum flow upstream.

Antonia et al.: Similar study using heat as a passive scalar marker. Fig. shows
conditional averages of u, v and theta and the momentum and heat fluxes in the
inner layer of the TBL.

SLIDE 13
Head & Bandyopadhyay: Smoke visualization of boundary layer structure viewed in
inclined planes and interpreted as hairpin vortices.

Balint et al.: A similar study with wall layer and potential flow separately marked by
smoke and the tripping of the boundary layer varied. Photo shows the evolution and
growth of wall layer structures which eventually penetrate the potential flow. The
potential flow is also ingested deeply into the turbulent boundary layer.

Townsend: Proposed the attached eddy model

Perry et al.: Used this conceptual model of attached hairpin eddies, rolling up and
lifting up out of near wall sheets of vorticity, to construct a theoretical model that
attempts to explain many of the statistical features of the boundary layer, including
the log layer.

1986 - 2011: DNS, Multi-Sensor Hot-Wire Probes & PIV Measurement

SLIDE 14

Kim & Moin: Vorticity (vortex lines) showing hairpin and Q-like shapesina
turbulent channel flow DNS. Cross-stream plane cut through the leg of the vorticity
line bundle in the upper right figure shows that this is truly a vortex as revealed by
the velocity vector projections on this plane.

SLIDE 15

Kim Moin & Moser: Their DNS was accepted by experimental researchers in part
because of the flow visualization they did of simulated hydrogen bubbles that
revealed the same structure as in physical experiments.

In this paper, they showed the first DNS distribution of the rms vorticity
components and other statistics of the vorticity field.



Balint et al.: We published our rms vorticity component distributions and other
vorticity field statistics, experimentally measured with our minature 9-sensor
probe, that year in the Proceedings of the 1st European Turbulence Conference.

SLIDE 16

Spalart: A year later, in 1988, he published the first DNS of a turbulent boundary
layer where he employed the so-called “fringe” method to rescale the flow allowing
him to employ periodic boundary conditions in the streamwise direction. The
figures are of the TKE budget and contours of vorticity projected onto streamwise
and cross-stream inclined planes of the flow.

Balint et al.: Experimental values of the turbulent production and dissipation rates
are compared to Spalart’s DNS values and the Kim, Moin and Moser DNS channel
flow values in the figure on the right.

SLIDE 1
Balint et al.: Vorticity fluctuation component spectra compared to Spalart’s DNS.

Distribution of the terms of the transport of total enstrophy equation.

SLIDE 18

Aubry et al.: Expansion of the wall region using POD to obtain low-dimensional sets
of ODEs. Streamwise rolls are revealed that have intermittent Reynolds stress
“burst” characteristics. This was one of the first applications of low-dimensional
chaotic dynamical systems theory to realistic turbulent open flows.

Antonia et al.: A rake made up of an array of 8 X-array hot-wires was used to
construct sectional streamlines and contours of the large-scale vorticity in
streamwise planes at several Reynolds numbers. Large-scale vortices (foci) and
saddle points of high strainrate are evident in this frame of reference traveling to
the left at 0.8 of the freestream velocity. Variation with Reynolds number is seen in
the figure in the lower right.

SLIDE 19

Bernard et al.: Lagrangian analysis of the Reynolds shear stress that decomposes it
exactly into (1) the correlation of u at the terminal point, a, with v at the set of initial
points, b, (2) a “displacement transport” term and (3) an “acceleration transport”
term. For large enough mixing times, this u_a v_b_bar correlation goes to zero, as
seen in the distribution on the right. The displacement transport term is simply a
sort of mixing length/ mean gradient type effect. The acceleration transport term
produces a significant fraction of the Reynolds stress, having a positive or negative
contribution depending on position relative to the wall.

The upper right figure shows the pdfs of the particle displacements sorted by the
quadrants of quadrant analysis as a function of y+.



Their group also identified quasi-streamwise vortices with a recognition algorithm
and studied particle displacements and Reynolds stress creation in relation to these
vortices as seen in the middle lower figure.

SLIDE 20

Spina et al: Studied the structure of supersonic turbulent boundary layers adopting
methods used in subsonic, low Reynolds number flows such as the VITA technique
and quadrant analysis.

SLIDE 21

Robinson: Analyzed the Spalart DNS to study the structure of the flow. Low
pressure was used as a criterion to detect vortices. Few complete hairpins were
observed, but this could have been a result of the threshold values set. The relation
of low-speed streaks and Q2 and Q4 Reynolds stress to the vortices is clearly seen.
Robinson believed that hairpin-shaped vorticity lines are simply a result of their
distortion by quasi-streamwise vortices, and that they do not necessarily,
themselves, indicate the presence of true hairpins.

SLIDE 22

Tsinober et al.: Use of a 12-sensor hot-wire probe to demonstrate, experimentally,
the most probable alignment of the vorticity vector with the intermediate
eigenvector of the rate of strain tensor. This had previously been seen in DNS of
both isotropic and shear flow turbulence and is now known to be a general
characteristic of all turbulent flows.

Durbin: Tensorially consistent 274 order closure modelling of the Reynolds stress
transport equation. Applied to channel and boundary layer turbulent flows with
and without pressure gradients and to flows around 90 deg. bends. Figures show
model values of turbulence intensities and friction coefficient distributions
compared to experimental values.

SLIDE 23

Choi et al.: Active control for drag reduction using (1) v control at the surface with
suction and blowing based on detection in the flow of sweep and ejection events,
(2) w control at the surface, (3) combinations of the two types of control, etc. The
figures show the effects of control compared to no control on TKE production and
dissipation rates and on the vorticity component rms distributions.

SLIDE 24

Saddoughi & Veeravalli: Performed a highly regarded experiment in the NASA
AMES huge wind tunnel with its 80’ x 120’ test section to examine indicators of local
isotropy in turbulent boundary layers. They documented the effects of Reynolds
number and proximity to the wall. The figures here show examples of (1)
compensated streamwise and cross-stream spectra rather far from the wall and at a



rather high Reynolds numbr (Rex= 1450) and (2) compensated second-order
structure functions for streamwise and cross-stream velocity fluctuations. Both
plots provide evidence of local isotropy under these conditions.

Wallace & Ong: We were kindly allowed to piggyback on their experiment to use
our 12-sensor probe to examine local isotropy of the vorticity field. The figure
shows evidence of it in the inertial subrange as seen in the ratio of the two cross-
stream vorticity components computed from the streamwise component under
isotropic assumptions to their measured values. This ratio should be unity for
isotropic flow, and it is in the inertial subrange. Experimental error takes over in the
dissipation range of this figure.

Mestayer had carried out an earlier and similar study in the high Reynolds number
IMST Air-Sea Interation Simulation tunnel at Rex= 616 in the dissipative range but
not in the inertial subrange.

Slide 25

Nagano & Tagawa: Trajectory analysis based on uv plane quadrants illustrated in
upper left. In lower right the number of types of types of trajectories are shown as a
function of the Willmarth & Lu “hole” size. The figure on the right shows auto
regressive (AR) model predictions of time series of temperature for various
trajectory patterns.

SLIDE 26

Klewicki et al.: Developed field site southwest of Salt Lake City, Utah, on the Salt
Flats, where measurements in the atmospheric surface layer could be carried out.
At sundown, neutral stability occurs giving conditions similar to those in a

laboratory boundary layer but at the very high Reynolds numbers, Reg, of 0(10°9).
The figures show: (1) the histogram of spanwise low-speed stream spacing obtained
from flow visualization, (2) distribution of the rms streamwise velocity distribution
showing how the peak increases with Reynolds number, (3)) the joint pdf of the u
and v fluctuations at low and high Reynolds numbers and (4) the space-time auto-
correlation of u at low and high Reynolds number.

Folz & Wallace: They have invited many research groups to work there over the
years. We were there the first year, and, among other things, measured the
contributions of all the terms to the dissipation rate.

SLIDE 27

Jeong et al.: Used method of detecting vortices with -A;, the second invariant of the
velocity gradient tensor which indicates dominance of rotation over strain. Found
quasi-streamwise vortices that are not in the form of hairpins. Vortices, of opposite
sign, slightly inclined to the wall and skewed in the x-z plane, exist in staggered
overlapping arrays. They state that a phase difference in space accounts for nearly



all of the Q2 and Q4 Reynolds stress as well as counter-gradient Q1 and Q3 Reynolds
stress.

Schoopa & Hussain: Carried out a transient growth stability analysis to show how
the vortices emerge out of instabilities of low-speed streaks under certain
conditions.

SLIDE 28

Honkan & Andreopolous: Used a 12-sensor probe to obtain the angular orientation
of the projection of the vorticity vector near the wall in wall normal and wall parallel
planes of the flow.

Ong & Wallace: Obtained these orientations for the vorticity filaments that most
contribute to the vorticity covariances from weighted vorticity component joint pdfs
(covariance integrand plots).

SLIDE 29

Barenblatt et al.: Proposed a Reynolds number dependent power law alternative to
the log law to describe the mean velocty in the overlap region. The figure shows
many different data sets plotted as evidence to support this theory. The debate
about the veracity of this partial similarity law compared to the complete similarity
log law still continues.

SLIDE 30

Guarini et al.: Carried out a supersonic Mach 2.5 DNS that showed very little
difference from subsonic turbulent boundary layer statistics. The figures show the
distributions of the rms vorticity components and the TKE budget.

Kholmyanshy et al.: Carried out a study using a 20-sensor probe to measure both
velocity and velocity gradient as well as temperature fluctuations. The measured
many different properties of these fields including the joint pdf of the enstrophy
production vs. production of strain shown in the figure.

SLIDE 31

Adrian et al.: Used planar PIV in numerous studies to reveal many features of the
structure of turbulent boundary layers. Fig. in upper center compares rms spanwise
vorticity to DNS and hot-wire values. The figures in the center and on the right
show large scale zones of coherent momentum, high shear in ramps inclined to the
wall and vortices that are interpreted as “heads” of hairpins. Their hairpin model],
like those of others, accounts for Q2 and Q4 Reynolds stress. They also describe the
hairpins as occuring in “packets” and account for the creation of new hairpins.

SLIDE 32

Chacin & Cantwell: Used critical point theory, primarily developed by Perry and
Chong, to analyse the Spalart turbulent boundary layer DNS. The top middle figure
shows regions of postitive discriminant in association with Reynolds stress events.



The top right figure shows the characteristic “tear drop” shape of the Q-R plane joint
pdf with superimposed regions of Q2 and Q4 Reynolds stress. The regions in this
plane with respect to the Villefosse line of zero discriminant are described by the
flow categories in the figure to the lower left.

Andreopolous & Honkan: Obtained this teardrop shape jpdf from 12-sensor hot-
wire measurements in the buffer layer of their experimental turbulent boundary
layer. Itis now believed to be a universal feature of turbulence.

SLIDE 33

Carlier & Stanislas: Used planar PIV to investigate structure in various planes,
including planes tilted upstream and downstream across the flow, to study the eddy
structure in the boundary layer at Rg = 7,500. They used a pattern recognition
technique that involved convolving a model vortex with the 2D flow field to educt
the actual vortices. Instantaneous and average vortices are shown in the figures in
the upper right. They studied Q2 and Q4 events in spatial relationship to these
vortices.

SLIDE 34
Kim & Adrian: Observed very large scale motions (VLSMs) in a turbulent pipe flow
that were 12 - 14 times as long as the pipe radius.

Del Alamo et al: Also observed these VLSMs in their channel flow DNS.

Hutchins & Maurusic: Observed VLSMs as long as 206 in the log and lower wake
regions in their experiment in the Utah desert, and studied how they affect
premultiplied 1D spectra of the streamwise velocity fluctuations. The rising plateau
in the rms distribution further from the wall is related to the second peak in the
spectrum coming from these VLSMs.

SLIDE 35
Ringuette et al.: Carried out a DNS at Reg ~ 2600 and Mach ~ 3 in which they
observed most of the same types of structures as in subsonic flow.

Pirozzoli et al.: Also carried out a supersonic DNS at Mach = 2 and Reg =950 - 1350.
They studied the statistical properties of quasi-streamwise vortices near the wall
and of hairpins and hairpin packets further from the wall. In the outer layer they
state that these statistical properties are consistent with noninteracting closed loop
vortices. In their later study they conclude that sheet-like structures have a greater
influence on the statistical properties of the TBL than the vortices.

SLIDE 36

Mathis et al.: Studied the modulating effect that large scale motions in the outer flow
have on the fluctuations in the inner region of the flow. They did this by filtering the
streamwise velocity signals and correlating them. They examine how the degree of

correlation depends on wall normal distance and how it is related to the 1D spectra.



SLIDE 37

Wu & Moin: Carried out a spatially developing DNS of the TBL which goes through
bypass transition to turbulence. It exhibits a forest of hairpins. When the wall is
passively heated, the temperature field also exhibits hairpins.

SLIDE 38

Sheng et al.: Used digital holography to study the wall layer structure in a square
duct at Re; = 1470 and obtained conditionally averaged hairpin structures that
emerge from the spanwise vorticity sheets near the wall and are related to high wall
shear stress occurances.

Elsinga et al: Found hairpin packets using tomographic PIV at Reg =34,000 and
Mach =2

SLIDE 39

Schlatter et al.: Carried out boundary layer DNS up to Reg ~ 4,300. They carefully
studied statistical properties, and have also compared the consistency of various
DNS studies. They don’t observe hairpins in their highest Reynolds number DNS.

SLIDE 40
Jimenez et al.: Carried out a TBL DNS up to Reg = 2100. They don’t observe
hairpins, but they do observe the large scale coherent momentum events.

SLIDE 41

Guala et al.: Observations in the atmospheric surface layer quantifying interactions
between the VLSMs and the turbulence from the energy containing to the
dissipative scales.

Duan et al.: DNS of TBL up to hypersonic cases. Flow structure doesn’t change
much.

SLIDE 42

Park et al. : Showed that statistics, including those of the fine scale properties,
enstrophy and dissipation rate, are very similar in transitional turbulence spots and
in developed turbulence. This implies that the structure is likely to be similar.
Octant analysis showed that motions consistent with mean gradient transport of
momentum and heat are the dominant contributors to the fluxes for both
transitional spots and developed turbulence. The transport of momentum and heat
is strongly associated with vortices as shown in the cross-stream cuts through the
instantaneous fields for the transition and developed cases.

SLIDE 43

Summary
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