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Abstract. Two-point correlation equations which include the effects of a uniform tempera- 
ture gradient and body force are constructed from the Navier-Stokes, heat-transfer, and con- 
tinuity equations. A solution is obtained by converting the correlation equations to spectral 
form and assuming that the turbulence is sufficiently weak for triple correlations to be ne- 
glected. It is shown that the turbulence decays with time, although the rate of decay is altered 
by buoyancy effects caused by the body force and temperature gradient. The buoyancy forces 
can either extract energy from the turbulent field or feed energy into it, depending on the 
directions of the body force and temperature gradient. Spectra are calculated for the turbulent 
energy and for the various terms in the turbulent energy equation as well as for the tempera- 
ture fluctuations and turbulent heat transfer. For fluids with Prandtl numbers less than I the 
buoyancy forces act mainly on the large eddies, whereas for higher Prandtl numbers they can 
act on the smaller ones. When the buoyancy forces are stabilizing, the turbulence can cause 
heat to flow against the temperature gradient for certain values of the parameters. For making 
the calculations, it is assumed that the turbulence is initially isotropic and the temperature 
fluctuations initially zero. 

INTRODUCTION 

The work described here is concerned with 

the effect of buoyancy forces on a homogeneous 
turbulent field. The buoyancy effects are pro- 
duced by a uniform vertical temperature gra- 
dient and body force. To make the problem 
tractable, we assume that the turbulence is 
weak enough for triple correlations to be negli- 
gible in comparison with double correlations. 
Other studies of low-Reynolds-number turbu- 
lence are given in von Kdrmdn and Howarth 
[ 1938], Batehelot and Townsend [1948], Dunn 
and Reid [1958], Pearson [1959], and Deissler 
[1961a and b]. An experimental basis for low- 
Reynolds-number solutions is given by Batch- 
elor and Townsend [1948]. Although the trans- 
fer of energy between eddies of various sizes is 
not present when triple correlations are neg- 
lected (except in the presence of a mean ve- 
locity gradient [Deissler, 1961a]), it appears 
that the analysis can provide insight about the 
other important turbulent processes, such as 
the dissipation and the production or extraction 
of turbulent energy by buoyancy forces. 

To proceed with the analysis we require two- 

x Based on a paper presented at the International 
' Symposium on Fundamental Problems in Turbu- 
lence and Their Relation to Geophysics sponsored 
by the International Union of Geodesy and Geo- 
physics and the International Union of Theoretical 
and Applied Mechanics, held September 4-9, 1961, 
in Marseilles, France. 

point correlation equations which include buoy- 
ancy effects. These will be derived in the next 
section. 

CORRELATION AND SPECTRAL EQUATIONS 

The Navier-Stokes equation with a body 
force is 

Op + g, 
at Ox• p axe Ox• Ox• 

where the subscripts can take on the values 1, 
2, or 3 and a repeated subscript in a term in- 
dicates a summation. The quantity u, is an 
instantaneous velocity component, x• a space 
coordinate, t the time, p the density, v the kine- 
matic viscosity, p the instantaneous pressure, 
and g, a component of the body force. If the 
density depends, effectively, only on tempera- 
ture and is not far removed from its equilibrium 
value (value it would have for no heat transfer 
or turbulence), equation 1 can be written as 
[Landau and Lifshitz, 1959], 

Out+ O(uiuk) _ 1 O (p_ pc) 
Ot Ox• p 

O•ui 
+ - - (2) 

Ox• Ox• 

where • is the instantaneous temperature, T e 
and p• are, respectively, the equilibrium tem- 
perature and pressure, and • is the thermal 
expansion coefficient given by 
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/• = --(1/p)(Op/OT)• (3) 

Equation 2 applies at a point in the fluid, say 
point P. A similar equation written for a point 
P', separated from the point P by the vector r, is 

' O(u•uO 1 0 Oui •_ --7' -- , (p' -- p'•) 
Ot Oxk p 

2 ! 

0 ui + •- , , - •( - •)g• (4) Oxk Ox• 

Note that the equilibrium temperature is uni- 
form, whereas the equilibrium pressure is not. 
The instantaneous temperature can be written as 

•= T+z (5) 
where T is the time or ensemble average tem- 
perature and r is the fluctuating component of 
the temperature. Multiplying equation 2 by u'i 
and equation 4 by u•, adding, taking averages, 
and substituting equation 5 give 

' ' Ou•u•u• Ouiui Ouiu•ui • Ot } Ox• Ox• 
1 O ---7 1 O , 

= ---- PZli -- t uip 
p Ox• p Oxi 

2 ! 2 ! 

0 u•u• 0 u•ui 
! ! Or- • Oxk Ox• + • Ox• Ox• 

-- •gi7'U i -- •gittiT (6) 

where the overbars indicate average values. In 
obtaining equation 6, the fact that fluctuating 
quantities at one point are independent of the 
position of the other point was used. Introducing 
the variable r• ---- x'• -- x• gives, for homogeneous 
turbulence, 

! o , o (u,• - u•u•,) o-• u,u, + o•-• 

1 0 .p, 0 --p , •-• pu• 
2 ! 

-Jr- 2v Or• Ork •givui -- •giu•v (7) 
Equation 7, except for the last two terms, which 
give the effect of buoyancy forces, is the same as 
that obtained by yon Kdrrndn a•d Howarth [1938]. 

An expression for the pressure-velocity cor- 
relations can be obtained by taking the diver- 
gence of equation 2 and using the continuity 
relation, which is, for small density variations, 

Oui/Oxi = O. This gives 

I O•(p -- 
p Ox• Ox• 

Ox• 

Multiplying equation 8 by u•i, taking averages, 
and introducing the wfiable r• result in 

2 I I 2 

I O pu• O•ui O u•u•ui 
p Or• Or• - •g• Or• Or• Or• (9) 

Similarly, from equation 4, 

1 0 u•p Ou• o u•u•u• 
P Or i Or i -- --•gi Or i Or• Or i (10) 
To obtain expressions for the temperature- 

velocity correlations in equations 7, 9, and 10, 
the heat-transfer equation must be considered. 
•en frictional heating is neglected, this equa- 
tion can be written for points P and P' as 

- O(•u•) o• + . _ (•) 
Ot Ox• Ox• 

and 

O•' + O(•'u•) O•' (12) Ot Ox• = a Ox• Ox• 
Substituting equation 5 in equations 11 and 12, 
averaging, and subtracting the averaged equa- 
tions from the unaveraged ones give 

UI T ! Or' aT' O( • ) 
at + u• • + Ox• 

OUk T 

Oxk Ox• 
! ! 

•2T! 

a Ox• Ox• 

(]3) 

Multiplying equation 13 by u'i and equation 4 
by r, adding, taking averages, substituting equa- 
tion 5, and introducing the variable r• give, 
for a uniform temperature gradient, 

! 

Oru i , OT + 0 ( ,,_ __ __ rUiU• ru•ui/) 0 t q'- u,ui Oxk Or, 
_ _10•p'_ •' ' -- 0 ru i 

(14) 
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Similarly, from equations 14, 2, and 5, 

Over' nu 0 , , ,) • OT at • (u•u•r - u•u•r + u•u• 

i O r' O•'uir' - • Or• p + (• + •) • • •g•/ (16) 
An expression for • can be obtMned from 
equations 13 and 14' 

ot + (u• + •u•) o• 
' ' •' (]7) a ,) a •' + •r• ( •' •' u,• - u,•-•- = 2o• ar,• ar,• 

Expressions for the pressure-temperature corre- 
lations in equation 16 are obtained from equation 
8 and a similar equation for p" 

i O2pr art" •' r 7 ' 0 uiuk 
-- •g• (18) 

p Ori Or• Ori Or• Or• 

If the turbulence is sufficiently weak for triple 
correlations to be neglected, equations 7, 9, 10, 
15, 16, 17, 18, and 19 form a determinate set. 
It is desirable to write the equations in spectral 
form in order to reduce them to ordinary differ- 
ential or algebraic equations and because of the 
physical significance of spectral quantities. For 
this purpose we can introduce three-dimensional 
Fourier transforms defined as follows: 

UiU; = f:c• •iS exp (iE.r) dE (20) 
pu; -- f:•o Xs exp (iE.r) dE (21) 

u,p' -- f;•o k• exp (iE.r) dE 
pr -- • exp (iE.r) dE 

(•) 

(23) 

rp = exp (iE.r) dE (24) 

rui 's exp (iE.r) dE (25) 

u,r' = f:•, '• exp (iE.r) dE (26) 

rr = $ exp (iE.r) dE (27) 

where E is a wave-number vector having the 
dimension 1/length and dE -- dK• dK, dg3. Sub- 
stituting these Fourier transforms into equations 
7, 9, 10, 15, 16, 17, 18, and 19 and neglecting 
triple correlations result in 

' - i•X•) __ --- (igiX i 
ot p 

(28) 

1 2 

p 
(29) 

1 2 ! -- - • Xi = 
p 

(30) 

0•,• OT 1 . 
Ot •ks Ox• p 

O,'y!• aT q_ 1 Ot --• Ox• p 

(31) 

(32) 

1 2•. _ --- • fig•i• • (33) 
p 

_ _1 •:•., = --•g•igk • (34) 
p 

o• _ _(7• + %) o_T_• _ 2•. • (35) 
Ot Ox• 

Substitution of equations 29 and 30 into 28 and 
equations 33 and 34 into 32 and 31 shows that 
T•i - •i• and W• - W• for all times if they are 
equal at an initial time. Here it will be assumed 
that the turbulence is initially isotropic and that 
the temperature fluctuations are initially zero, 
so that the above relations will hold. Thus the 

set of equations 28 to 35 becomes 

KkK i KkKi 

Ot t• t• 

2 

-- 2•t• 'Pii -- [•g•% -- (36) 

Kk K s 0• O___T + •g•--•- • Ot -- •i Ox• tr 

(37) 
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_ OT oa _•%_ •.• a (as) 
at Oxk 

Assume that the only nonzero component of g 
is in the negative vertical direction, and let 

g ---- -- ga (39) 

Also, assume that the uniform temperature 
gradient is in the verticM direction, •nd let 

• • o•/Ox• (•o) 

Letting i = j = 3 in equations 36, 37, and 38, 
2 

K3 __ 2 •ss -- --2•g-•s 2•Tss • 2•g% (41) 
dt • 

2 

K3 d% _ b• -- •g-• • 
dt • 

-- (a • •)•% • •g • (42) 
d• 

- 2b%•- 2aK 2 $ (43) 
dt 

Contracting i and j in equation 36 gives 

(44) 

The pressure term (second term in equation 41) 
drops out of equation 44, as can be seen from 
equation 7 and the relations O/Ori = --O/Oxi 
and O/Or• = O/Ox'•. Thus, as in the case of homo- 
geneous turbulence without buoyancy effects, 
the pressure term transfers energy between the 
directional components of the energy but gives 
no contribution to the change of energy at a 
particular wave number. 

SOLUTION OF SPECTRAL EQUATIONS 

A general solution of the simultaneous equa- 
tions 41, 42, and 43 is 

•a -- C, exp [- (a -]- •) •(t -- to)] 

+ C2 exp {--[(a + y)g• -- s](t- 
+ c• •xp {-[(. + •)• + •](t- to)/ (4•) 

• = -(c•(. - •)• •xp [-½ + •)•(t- to)] 

+ c•[(. - •) • - •] 

ß exp {--[(a + •)•2_ s](t-- to)} 
+ c•[(. - •)• + •] 

ß exp {--[(• + •)• + s](t -- to)}) 

+ 2•g I -- 5 (46) 
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(47) 

s ---- %/(a -- •)•.•4 _ 4b•g(1 -- •]/K" (48) 

and C•, C•., and Ca are constants of integration. 
Equation 45 indicates that, as t approaches 
infinity, •vaa approaches zero, so that no nonzero 
steady-state solution exists. 

For determining the constants of integration, 
we use the initial conditions that, for t = to, 
the turbulence is isotropic, and •,a = •i = 0. 
The last two conditions correspond to the 
assumption that the temperature fluctuations 
are zero at t = to. This would be true, for in- 
stance, if the turbulence were produced by an 
unheated grid. The mean temperature gradient 
would then cause temperature fluctuations to 
arise at subsequent times. The assumption that 
the turbulence is isotropic at t = to implies that, 
for weak turbulence, 

(•v,•)o = (Jo/12•r•(,, •5,i- •,•) (49) 

as given by equation 43 in Deissler [1961a]. The 
turbulence is not, of course, isotropic at sub- 
sequent times, as will be seen. By using these 
initial conditions, the constants of integration 
are found to be 

c• = _,•o•';•g(•- d/•')'(•o) 



+ (2• ') (52) 

For small values of t•, the quantity s, as given 
by equation 48, becomes imaginary. In that 
ease the following solution can be used: 

(pa, -- exp [-- (a q- •) g2(t -- to)] 

ß {G + G cos [•'(t- to)] 

q- C• sin [s'(t -- to)]} (53) 

% -- --(exp [--(a q-•,)g2(t-- to)] 

ß { cl(. - •) • + [c•'(. - •) •' - c•.'] 

co.• [.'(t- to)] + [c•(.- •)• 

q- C2s'] sin [s'(t -- to)] }) 

NEGATIVE 
TEMPERATURE 
GRADIENT 
(DESTABILIZlNG) 

TEMP 

Fig. 1. 

+ 2•a i- (54) 

I BODY FORCE, 
g 

t..,I 

TEM_PERATURE 
GRADIENT 
{STABILIZINGI 
TEMP 

Expected effects of buoyancy forces on 
turbulent eddy. 

where 

4 
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(55) 

s' ---- 4b•g 1 -- • -- (a -- •)294 (56) 

cI = 2o•a 1 - • + (o• '•) (57) 

C• = Jo K2 1- 2b•g 1- 

- ½ - •)•2• + (•2•'•) 
and 

C• = Jo• • 1 -- • (a--v) + (12w•s ') (59) 
Finally, solution of equation 44 gives 

•,• = • - (•/•) 

+ • 1•] e o (60) 
. 

Although the quantities •i, Y•, and • are of 
interest in themselves, it is somewhat easier to 
interpret quantities that have been integrated 
over all directions in wave-number space as 
suggested by Batchelor [1953]. Thus, a quantity 
•i can be defined by the equation 

.A 

•'•(•) = Jo •'• a• (01) 
where A is the area of a sphere of radius g. 
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•*= • I/2 (t-t 0 )1/2• 

Fig. 2a. Dimensionless spectra of u•ul (energy spectra) with buoyancy forces destabilizing. 

Then, since 

•,u• = •i d• (62) 

(let r = 0 in equation 20), •P•i d• gives the 
contribution from the wave-number band d• to 

7giU i ß 

The equations for Taa, T•i, 'a, and $ can be 
written in spherical coordinates by using the 
transformations 

• = • cosTsin 0 

•2 -- •sinTsin 0 

K3 --- t• COS 0 

.032 -- 
g* =b,8 (t-t o )2 g 

0 
.028 

.024 

.020 

.016 

.012 

.'•= .008 

.004 

PRANDTL 
NUMBER, 

.7 
I0.0 

1.6 2.0 '2.4 2.8 3.Z ;5.6 ß 4..0 

K*= • I/2 (t. t O)!/2 K 

Fig. 2b. l)imel•sionless spectra, of n,u• (e•ergy spectra) with buoyancy forces stabilizing 



SYMPOSIUM ON TURBULENCE IN GEOPHYSICS 3055 

Fig. 3. 

0 .4 .8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 

•<#= •/1/2 (t-t 0 )1/2•( 
Comp•riso• o• normalized energy, cl•ssJp•t•on, •nd buoyancy spectr• with buoyancy 

forces destabilizing. 

Then, since •33 (as well as •, %, and 5) is not a 
function of the angle T, the expression for •,a 
from equation 61 can be written as 

1 

0) = •33 C OS 

We can write similar expressions for •, %, 
and • integrated over all directions in wave- 
number space: 

•ii = 4•K2 •ii d(cos 0) (64) 
1 

= % (cos 0) (65) 
A = 4• • $ d(cos 0) (66) 

Letting r = 0 in equations 25 •nd 27, 

zu• = • F• d• (67) 
•nd 

z = 5 d• (6S) 

so that, •s in the ease of •, F• d• and A d• 
give, respectively, contributions from the w•ve- 
number band d• to zu• and z•. Computed spectr• 
of the various turbulent quantities will be con- 
sidered in the next section. 

RESULTS AND D•SCUSS•ON 

Before we consider in detail the spectra com- 
puted from the foregoing analysis, it may be 

worth while to indicate physically how the 
buoyancy forces would be expected to alter the 
turbulence. Figure I shows the effects of a 
negative and a positive vertical temperature 
gradient with the body force directed downward. 
For a negative temperature gradient, a turbulent 
eddy moving upward, for instance, will usually 
be hotter than the surrounding fluid. If the fluid 
has a positive temperature-expansion coefficient, 
the eddy will also be less dense than the sur- 
rounding fluid, so that buoyancy forces will tend 
to accelerate it upward. Similarly, an eddy 
moving downward will usually be accelerated 
downward. Thus, the negative temperature 
gradient tends to feed energy into the turbulent 
field, so that its effect is destabilizing. For a 
positive temperature gradient, it can be seen 
that the effect will be opposite to that just 
described; that is, the buoyancy forces will tend 
to stabilize the fluid. 

Dimensionless energy spectra (spectra of 'u•ui) 
are plotted in Figure 2. For making the cal- 
culations, the indicated integration in equation 
64 was carried out numerically. When plotted, 
using the similarity variables shown, the spec- 
trum for no buoyancy forces (g* = 0) does not 
change with time, so that comparison of the 
various curves indicates how buoyancy effects 
will alter the spectrum. Thus, if a dimensionless 
spectrum curve lies above the curve for g* = 0, 
the turbulent energy for that case is greater than 
it would be for no buoyancy forces. The turbu- 
lence itself is, of course, decaying with time. 
Curves are shown for Prandtl numbers r//c• of 
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.28 -- 

.24 

.20 

.16 

-40 

g* = b,8(t-t0)2g 

PRANDTL 
NUMBER, 

z,/a 

.o• 

.7 
IO.O 

0 .4 .8 1.2 1.6 2.0 2.4 2.8 5.2 5.6 4.0 

K,• = •1/2(f.fo)1/2 K 

Fig. 4a. Dimensionless spectra of u..? with buoyancy forces destabilizing. 

0.7, 10, and 0.01. These Prandtl numbers corre- 
spond, respectively, as far as order of magnitude 
is concerned, to a gas, a liquid like water, and a 
liquid metal. 

Negative values of the buoyancy parameter 
g*, defined as b•(t- to)"g, correspond to negative 
temperature gradients, and positive values cor- 
respond to positive temperature gradients. (The 
quantity b in the definition of g* is the tem- 
perature gradient.) In agreement with the 
discussion in connection with Figure 1, the areas 
under the spectrum curves increase for negative 

temperature gradients and, in general, decrease 
for positive ones. A reversal of the expected trend 
is shown by the curve for a Prandtl number of 
10 and a g* of 4. The action of the buoyancy 
forces in producing turbulent energy is particu- 
larly evident for a Prandtl number of 0.01 and 
negative values of g*. There, the buoyancy forces 
tend to produce an extra peak in the spectra in 
the low-wave-number or large-eddy region. 

Terms in the spectral energy equation, as well 
as energy spectra, are plotted in Figure 3 for 
cases in which the buoyancy forces augment the 

'011I g* =bJ3(t-to)2g /"•'•\ .01 0 / \ \ PRANDTL 
,• '•, / \ NUMBER 

.•o / 
/, .o, 

T ø .006• 

•'• .oo4• / 
0 .4 ,8 1,2 1.6 2,0 2.4 2,8 3,2 3,6 4,0 

•, =• 118 {l-t 0)1/• • 

•. •. 
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turbulence. The curves are normalized to the 
same height for comparison. The terms for the 
energy equation were obtained by integrating 
the terms in equation 44 over all directions in 
wave-number space by using equations 64 and 
65. The second term in equation 44 gives the 
turbulent dissipation, and the last term gives 
the effect of buoyancy forces on the turbulence. 

Consider first the curves in Figure 3 for 
Prandtl numbers less than 1. Those curves 

indicate that the spectrum of the buoyancy term 
tends to coincide with the energy spectrum for 
Prandtl numbers less than 1. That is, the energy 
from the buoyancy forces feeds into most of the 
parts of the energy spectrum. On the other hand, 
the dissipation regions are considerably separated 
from the energy-containing regions, the separa- 
tion being greater for the lower Prandtl number. 
The dissipation regions for the two Prandtl 
numbers are close together, thus indicating that 
buoyancy forces, which are influenced by Prandtl 
number, do not greatly influence the dissipation 
for Prandtl numbers less than 1. The dissipation 
occurs mostly at high wave numbers, where the 
effect of buoyancy forces is not important. The 
low-wave-number parts of the energy spectrum, 
by contrast, are much more affected by buoyancy 
forces at low Prandtl numbers than at higher 
ones, because the eddies associated with the 
temperature-velocity correlations (see equation 
7) are much larger at low Prandtl numbers. 

The spectra of the temperature-velocity corre- 
lations will be considered later (see Fig. 7). 

The curves in Figure 3 for a Prandtl number 
of 10 indicate that for high Prandtl numbers, in 
contrast to the case of Prandtl numbers less than 

1, the buoyancy forces can act on the small 
eddies. As a result of this effect, the buoyancy 
forces alter the dissipation spectrum for high- 
Prandtl-number fluids. 

Dimensionless spectra of u8 •-, which is the 
component of the turbulent energy in the 
direction of the temperature gradient and body 
force, are presented in Figure 4. The curves are 
somewhat similar to those for the spectra of 

ugu• and exhibit double peaks at the low Prandtl 
number. However, some of the spectra for u8 •' 
also have double peaks for a Prandtl number of 
10. These are apparently caused by the action 
of the buoyancy forces on the small eddies. 
Another unexpected result is that the curve for 
a Prandtl number of 10 and a g* of 4, although 
for a case where the buoyancy forces would be 
expected to be stabilizing, lies above the curve 
for no buoyancy effects. The physical reason for 
this result is not yet clear. It may be that some 
of the eddies, in this case, oscillate several times 
before being damped out. 

In general, the turbulence is anisotropic. The 
anisotropy of the turbulence is clearly seen in 
Figure 5, where the spectrum curves for ua 2 

2.8 

2.4 

2.0 

-__- -_:_--.=: PRANDTL. 

..... •,.•"• NUMBER, 
0.7' 

' I0.0 
.01 

L / 

ß I 
0 .8 1.6 2.4 $.2 4.0 4.8 5.6 6.4 7.2 8.0 

•ce= v 1/2 (t.to)1/2• 

Fig. 5. Curves showing ratio of spectrum curves for u32 to those for u•u•/3. 



3058 ROBERT G. DEISSLER 
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Fig. 6a. Dimensionless spectra of temperature variance •--; with buoyancy forces destabilizing. 
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I / / \ \ \ 
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\ \ 
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\ \ \ / / / 
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.012-- ///// /// x, \ \ \ -. \ \\ 

/ / // '• xx \ x 

.004 '• •"•- 

! I I I I I 
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• • • i/•(t.•0 )I/• 

Fig. 6b. Dimensionless spectra of temperature variance •W with buoyancy forces stabilizing. 
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divided by those for uiui/3 are plotted. For 
isotropic turbulence all values of •33/(•i/3) 
would be 1, inasmuch as •i•/3 represents the 
average spectrum of the components of the 
energy. For dcstabilizing conditions u32 is higher 
than the average component, whereas for 
stabilizing conditions it is lower. This is physically 
reasonable, inasmuch as the buoyancy forces 
would be expected to act mainly on the vertical 
components of the velocities of the eddies. In 
fact, equation 36 indicates that the buoyancy 
terms (last two terms) occur only in the equation 
for T• for a vertical body force. 

For Prandtl numbers less than I the anisotropy 
is most pronounced in the large-eddy region, so 
that apparently the buoyancy forces act mostly 
on the large eddies. In the small-eddy region the 
curves for Prandtl numbers less than I approach 
1, so that the turbulence is isotropic in the 
smallest eddies. Thus, the theory of local isotropy 
seems to apply here. This observation is in 
opposition to that for weak turbulence with a 
uniform velocity gradient, where local isotropy 
was absent [Deissler, 1961a]. Also, the curves in 
Figure 5 for a Prandtl number greater than 1 
do not show local isotropy. Thus, local isotropy 
seems to be obtained only for Prandtl numbers 
less than i in the present analysis. The situation 
may be different for high Reynolds numbers. 

It was originally thought that the difference 
between the results for Prandtl numbers less 

than, and greater than, I was caused by a 
difference in the effect of pressure forces in the 
two cases. A calculation with the pressure force 
terms absent, however, indicated that those 
terms have but a minor effect on the results. 

It appears that the effect is due to the way the 
buoyancy forces act in the two cases and that 
the buoyancy forces can act on the smaller 
eddies at high Prandtl numbers. This is in agree- 
ment with the curves in Figure 3. 

Spectra of the temperature variance • are 
plotted in Figure 6. For g* - 0, the results 
reduce to those of Dunn and Reid [1958]. The 
trends with g* are similar to those for the 

, 

spectra of u•u•; that is, the areas under the 
curves are larger for negative than for positive 
temperature gradients. However, the areas under 
the curves for low Prandtl numbers are much 

smaller than for the higher ones because, for the 
same viscosity, the high thermal conductivities 

associated with lower-Prandtl-number fluids tend 

to smear out the temperature fluctuations. As 
Prandtl number decreases, the spectra move 
into the lower-wave-number regions because the 
conduction effects tend to destroy the small 
temperature eddies more readily than larger ones. 

The last spectra to be considered are those of 
the temperature-velocity correlations ru•. These 
are plotted in dimensionless form in Figure 7. 
The quantity rua is proportional to the turbulent 
heat transfer. The total heat transfer q3 is the 
sum of the laminar and turbulent heat transfer; 
it is given by 

q3 = -- k( dT/ dx3) -]- pc• 

where k is the thermal conductivity and c• is 
the specific heat at constant pressure. Inasmuch 
as the temperature gradient b occurs in the 
denominator of the dimensionless spectrum 
function in Figure 7, those curves can also be 
considered as the spectra of the eddy diffusivity 
for heat transfer. The eddy diffusivity for heat 
transfer eh is defined by 

7'U3 

= - aT/ 
The spectra indicate that, when the buoyancy 
forces are destabilizing, the turbulent heat 
transfer is greater than it would be without 
buoyancy effects. This is congruous with the 
effect of buoyancy forces on the turbulent 
intensity shown in Figure 2. Similarly, for 
positive values of g*, the turbulent heat transfer 
is less than it would be for no buoyancy forces. 
However, as g* continues to increase, the turbu- 
lent heat transfer goes to zero and then changes 
sign. That is, the turbulence begins to transfer 
heat against the temperature gradient. This is 
shown somewhat more clearly in Figure 8, 
where the temperature-velocity correlation co- 

eificient •u•/[(•2)•2(u•)•q is plotted against g*. 
As g* increases, the sign of the turbulent heat 
transfer oscillates. Although these are rather 
surprising results, turbulence has on occasion 
been observed to pump heat against a tem- 
perature gradient. This occurs, for instance, in a 
Ranque-Hilsch vortex tube, where expansion 
and contraction of eddies in a pressure gradient 
can cause heat to flow against a temperature 
gradient. The effect observed here, however, 
appears to be caused by the action of the buoy- 
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ancy forces on the eddies. In the stabilizing case, 
the buoyancy forces ordinarily act in the direction 
opposite to that in which an eddy starts to 
move (see Fig. 1), and so the sign of the velocity 
fluctuation might be changed without necessarily 
changing the sign of the corresponding tem- 
perature fluctuation. Thus, it appears possible 
that the direction of the turbulent heat transfer 

could be reversed. 

For negative values of g*, Figure 8 indicates 
that nearly perfect correlation between the tem- 
perature and velocity fluctuations is approached. 
This, again, can be explained by the action of 
the buoyancy forces. Thus, as was mentioned 
previously, an eddy moving upward in a negative 
temperature gradient will usually be hotter than 
the surrounding fluid and so will be pushed 
upward still more by the buoyancy forces. If an 
eddy moving upward happens to be cooler than 
the surrounding fluid, it will be pushed down- 
ward. Therefore, positive contributions to •u3' 
are amplified, whereas negative contributions are 
damped out by the buoyancy forces, so that the 
net effect is to increase the value of •u/toward 1. 

CONCLUSION 

It appears that by using the present method 
of analysis--that is, by neglecting triple corre- 
lations and limiting the investigation to a rea- 
sonably weak turbulence--we can profitably 
study many of the turbulent processes. It is 
true that because we neglected triple corrcla- 

tions we were not able to study the transfer 
of energy between eddies of various sizes, but 
that is only one of the important processes oc- 
curring in turbulence and can be studied sep- 
arately. For instance, we could, like Deissler 
[1960], consider three- and four-point correla- 
tion equations and neglect fifth-order correla- 
tions. However, if that were done in the present 
case, where buoyancy effects are considered, the 
problem might tend to get out of hand. Alter- 
natively, if a mean velocity gradient as well as 
a temperature gradient were included, we would 
obtain a transfer of energy from large to small 
eddies, like Deissler [1961a], even though triple 
correlations were neglected. It appears that the 
method of analysis followed here gives informa- 
tion about other turbulent processes such as the 
dissipation and the production or extraction of 
energy by buoyancy forces. 

It might be emphasized that no steady-state 
solution was obtained here. Although the buoy- 
ancy forces could produce turbo]lent energy, the 
production was never quite great enough to off- 
set the dissipation. It appears that, in order to 
obtain a steady-state solution, we would have 
l o consider a mean temperat•are profile with 
higher-order derivatives, rather than a linear 
one, as has been considered here. The same ob- 
servation applies to a turbulent shear flow, 
where no steady-state solution was obtained for 
a linear velocity profile [Deissler, 1961a]. The 
implications of these points for turbulence in 
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meteorology and oceanography would seem to 
be that a Richardson number containing only 
first spatial derivatives of the mean velocity 
and temperature are probably not adequate for 
specifying a steady-state turbulent field. It may 
also be necessary to specify at least the second 
derivatives of those quantities. 
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