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Thermal Turbulence at Very Small Prandtl Number 
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Abstract. The equations of thermal turbulence are derived for the case of small Prandtl 
number, a case o,f a relatively simple realizable turbulent flow. The power spectrum of velocity 
is described using the transfer functions of Heisenberg and of Kovasznay. It is seen that these 
do not give uniformly good approximations, since they force spectral energy to flow from low 
to high wave numbers, though the I<ovasznay approximation may be useful for large Rayleigh 
numbers. A general comparison of the present study with the MMkus theory of convection 
indicates disagreement which probably results from the dominance of nonlinear terms in the 
low-Prandtl-number limit. 

Introduction. In treating the dynamics of 
thermal turbulence one is confronted with two 

kinds of nonlineartry. The first kind results from 
distortions of the mean temperature profile; the 
second describes the self-interaction of the tur- 

bulent velocity field and the interaction of the 
velocity field with the random component of 
the temperature field. The fiuct.uation inter- 
actions, as we shall call them, appear as bilinear 
terms in the equations of motion and give rise 
to the well-known closure problem of turbulence. 
They have been studied with only modest suc- 
cess in the theory of homogeneous turbulence. 

In his attack on the thermal turbulence prob- 
lem, Malkus [1954b] has suggested that, rather 
than treat the fluctuation interactions explicitly, 
one should adopt some hypothesis that implicitly 
includes their net effect. In the Malkus theory, 
this hypothesis is a maximization principle for 
statistically steady turbulence; for example, in 
the work cited Malkus maximizes the heat trans- 

ported by the fluid. To actually carry out such 
a maximization Malkus has introduced an in- 

teresting formalism based on some additional 
assumptions. None of the individual assump- 
tions of the theory has been experimentally 
tested, but its predictions have been in good 
agreement with the available experimental data 
[Townsend, 1962]. 

If there is a preferred state of statistically 

x Based on a paper presented at the Interna- 
tional Symposium on Fundamental Problems in 
Turbulence and Their Relation to Geophysics 
sponsored by the International Union of Geodesy 
and Geophysics and the International Union of 
Theoretical and Applied Mechanics, held Septem- 
ber 4-9, 1961, in Marseilles, France. 

steady turbulence, it seems reasonable to sup- 
pose that this may be inferred from a theory 
based on a physically meaningful approxima- 
tion to the fluctuation interactions. The situa- 

tion may be analogous to that in microscopic 
statistical mechanics, where one hopes to deduce 
the canonical distribution from the Boltzmann 

equation, using an approximate representation 
of molecular interactions. 

In the present paper we shall describe and 
amplify an approach to the study of thermal 
turbulence suggested by Ledoux, Schwarzschild, 
and Spiegel [1961] (this paper will hereinafter 
be referred to as I) in which the fluctuation in- 
teractions are treated by approximations sug- 
gested in theories of homogeneous turbulence. 
The work outlined here will be restricted to the 

case of very small Prandtl number. Since the 
calculations are still in progress, the approach 
rather than the results will be stressed. As we 

shall see, the approach can lead to information 
about velocity and temperature spectra which 
does not seem to be readily deducible from the 
Malkus theory. An explicit comparison of the 
two approaches cannot be made properly as yet, 
though this possibility should occur in later 
treatments. 

The equations o[ the problem. We shall re- 
strict ourselves to convection between two hori- 

zontal plates at fixed constant temperatures. 
The lower plate is at z -- 0 and at a temperature 
AT higher than the plate at z -- d. The Bous- 
sinesq approximation will be adopted as well as 
the so-called free-boundary conditions. The gen- 
eral equations for this situation exist in many 
places in the literature (e.g., Malkus a•d Ve- 
tohis [1958]. 
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Denoting a horizontal average by an overbar, 
let us write the total temperature as 

•'(x, y, z; t) = 2(z) + O(x, y, z; t) (•) 

where O is the fluctuating part of the tern- where 
-- 

perature and • - 0. It follows from the heat 
equation that in steady turbulent convection 
the kinematic heat transport is constant, and 
given by 

H = w O + • (•) 

where 

• = -•T/•z (•) 

w is the vertical component of velocity, and K 
is the thermometric conductivity. In the absence 
of motion /• must be constant, but when con- 
vective transport occurs /• varies with z, being 
larger at the boundaries where w must vanish. 

The equations for the fluctuating quantities 
are 

Ou _ •,V2u _ gaol. -[- I Ap = --u. Vu (4) 
Ot 

and 

oo _ •V•0 + •w = -u. V0 + u. V0 (5) 
ot 

where p is the deviation of the pressure from its 
horizontal average and •. is a vertical unit vector. 
To these equations we may add the incom- 
pressibility condition 

V-u = 0 (6) 

Equations 4 and 5 have been written with the 
fluctuation interactions on the right-hand sides; 
these are the nonlinear terms we intend to ap- 
proximate. The term fiw is also nonlinear, 
though it does not appear so explicitly. 

As was mcntioned above, we shall limit o•r- 
selves to very small Prandtl numbers. To see 
the meaning of this restriction, let us introduce 
d, d'/v, v/d, and Kv/gad • as the units of length, 
time, velocity, and temperature, respectively. 
Eq•mtions 2, 4, and 5 then become 

• a• • •,o + • • (•) 

Ou V•u + n -• V p - - 
Ot p o' 

(4a) 

00 2 
•-- • O+•Rw-- AT 

= -a(u. •7 0 - u. • 0) (Sa) 

• = •/• (7) 

a = •. ay d/• (s) 

and II is a nondimensional standard pressure. 
Gonsidering now the case of small Prandtl 

number, •r, let us expand u and 0 in Taylor series: 

u = Uo + •u• + ...} (9) 0 = 0 0 + 0'01 + 

If we then introduce these series into equation 
4a we find 

0o = 0 (10) 
and 

Ouo _ •Uo q- II-1 •po 
Ot 

- 0•x = -Uo. VUo (• •) 

Thus, we see that 0 is linear with •r for small •r. 
Making use of this knowledge we learn from 
equation 2a that, to leading order in % 

n •-X7 = • + o(d) (•2) 
that is, fi is constant and convective heat trans- 
fer is much less than conductive transfer. Fur- 

ther, since AT is fixed, 

• = aT/d (13) 

which simplifies equation 5a. With this simpli- 
fication, equation 5a to leading order is 

•0• = -•wo (14) 
The simple form of equation ]4 makes the case 
of low Prandtl number very attractive, since we 
do not have to deal with turbulent conductivity 
at all. 

Finally, let us specify the bo, ndary conditions 
•,f the problem. In the nondimensional coordi- 
nates the fluid is bounded by planes at z = 0 
and 1. We adopt the so-called free-boundary 
conditions, namely, 

•= •-= 0= 0 •t z= 0,1 (15) 
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We will also assume that the layer has a square 
horizontal cross section of dimension L, where L 
is to be considered arbitrarily large. 

The spectral equations. In the procedure dis- 
cussed in I, we expand the velocity and temper- 
ature fields in an appropriate complete set. It is 
suggested that the normal modes of the linear- 
ized equations, with fi given its correct form, 
make up the relevant set. In the present case 
of low Prandtl number, these normal modes are 
combinations of sines and cosines. Thus, if we 
give due attention to boundary conditions, w 
and 0 should be expanded as follows: 

and 

w = • • W,,e'*"•sin n•rz (16) 

0 -- • • e,,,e'"x sin n7rz (17) 
a t,=l 

Here n is an integer, a is the horizontal wave 
vector with components ks and k•, and the 
summations extend over all positive n and all 
ks and k• that are integral multiples of •r/L. 
It should be remembered that all quantities are 
nondimensional. 

Corresponding expansions for u and v may 
be written. If we first take account of the 

incompressibility condition (6), these are seen 
to be 

cos n7rz (18) 

and 

= cos n•rz (19) 
a n'--1 

with the auxiliary condition 

n•'Wna '4- ik• Vna + ik, V., = 0 (20) 

Similarly we have 

-- -- COS 

P a 

Now, on making use of equation 14 we have 

where 

k • = n•w • + k:: + k• • = n•w: + a: (23) 
Using the above expansions, conditions 17 and 

20, and the statement O/Ot ( ) = O, where 
denotes ensemble average, we then find 

2(k a R,/ka)(W,,W,, *) = (NL), 

2ka( U. U,,*) = (NL)• (24) 

The various terms designated by NL are com- 
plicated trilinear terms in velocity components 
familiar in •he theory of homogeneous turbu- 
lence [e.g., Batehelot, 1953]. We shall no• write 
O•em ou• explicitly, since •hese are •he terms 
we shall approximate. 

Equations 24 show the anisoiropic characier 
of the problem. Only one approMmation has 
been proposed for She NL •erms applicable to 
such a case: the direci-interaction approMma- 
tion of Kraichnan [1959], and i• is probably 
the only approMmafion now available thai can 
lead ½o a fully consisten• picture. However, 
NL expression that results from Kraichnan's 
theory is extremely difficuk lo employ, and we 
have therefore elected •o begin by introducing 
simpler approximations •o NL devised for iso- 
tropic turbulence. To use these approximaiions 
we need to simplify our equations further. 

First, instead of dealing wkh •hree simultan- 
eous equations for •he kinetic energies, we write 
a single equation for •he three-dimen•onal en- 
ergy specirum, F, defined by 

5 2 
F(k) = 8•rs d • ke( U,, U.•* 

+ VnaVna* + WnaWna :•) 
From equations 24 we obtain 

(25) 

2R L • k • 2• •'(k) -- • S• • <W.,W.•*> 
= T(k) (26) 

where T(k) is the usual transfer function. We 
can express ( W.,•W,,•* ) in terms of F if we 
assume (as outlined above) that the normal 
modes of the linear equation form a complete 
set and that the purely viscous modes are not 
important in the dynamics. (These viscous 
modes are horizontal eddies which may be 
excited by northnear interactions and which 
transport no heat; see I.) Then equation 26 
becomes 

2•/(k)F(k) = --T(k) (27) 
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where 

r/(k) -- (Ra2/k 4) -- k • (28) 
The quantity r/is the growth rate of a disturb- 
ance in the absence of nonlinear interactions 
(see I). 

We are still not in a position to use the stand- 
ard isotropic approximations for T(k), since 
these give only estimates of the energy exchanged 
among modes of given absolute value of k. 
Let us therefore integrate equation 27 over all 
angles in k space. We find 

•,(•)•(•) = --•½) (•9) 
where 

and 

v(k) = fø•/2 g•½)r/(k) sin v • dO 
fo •/2 g•½) sin • dO 

(32) 

Here g/c(v •) is an appropriate weight factor. 
Now (29) is rigorously true if gk(v •) = F(k); 

but we do not yet know F(k). Hence we must 
choose a first approximation for gk(v•). In the 
absence of any other information, we take g•(v •) 
as the density of states in k space. The situation 
is illustrated in Figure 1, which shows the kxkz 
plane. The boundary conditions permit only the 
values of k that fall on the planes kz -- nTr, 
n = 1, 2, 3, .-- . The horizontal lines are 
projections of these planes on the kxkz plane. 
Then function g is 

cos t• m=l • -- COS -1-- (33) 
where • is the Dirac functionß For r/ we then 
obtain 

R 

[ ß I -- •_• rn:l rn •:l --k 2 (34) 
Thus, V is a discontinuous function of k, the 

k Z 
5'rr 

4'rr 

3 

Fig. 1. Illustrating the averaging over angle in 
k space. 

discontinuities occurring at the onset of each 
new vertical mode. These discontinuities may 
possibly be connected with the discrete transi- 
tions observed and discussed by Malkus [1954a]. 
However, we shall here smooth them over and 
take for r/the expression 

= (35) 

with the stipulation that k cannot be less than 
the smallest value allowed by the boundary 
conditions. This procedure of averaging v(k) 
differs from that in I, where V was given its 
maximum value as a function of a for each n. 

The resulting expression in that ease is 

_> = (35a) 

We also note that (35) is an entirely satisfactory 
approximation to (34), as may be seen in Figure 
2, where the two expressions are compared for 

Our final approximation will be to treat k as 
continuous rather than discrete, retaining •r as 
the smallest allowed value of k. We have already 
done so implicitly for a, having imagined that 
L--• co. But in letting n be continuous we are 
making a significant approximation. This is 
necessary in order to utilize the approximations 
for T(k) discussed in the next section. 

The behavior of r/as a function of k may now 
be outlined. For fixed R, r/= --•r" when k --- •r, 
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Fig. 2. v as a function of k for R -- •. The broken curve represents equation 34. 

the smallest allowed wave number. With in- 

creasing k, •1 rises to a maximum value and then 
falls monotonically, becoming negative once 
more when k is so large that dissipative processes 
become important. The value k, at which •1 first 
becomes zero with increasing k is never much 
greater than 9. In Figure 3 we show the depend- 
ence of k, and of k•., the wave number of maximum 
•1, as functions of R. 

Some approximate solutions. In this section 
we shall examine the consequences of adopting 
the approximations for the transfer function 
due to Heisenberg and Kovasznay. These are 
usually expressed for the definite integral of 
T(k), and Heisenberg's [1948] approximation 
is 

Now, since V -- 0 at k -- k•, we have, by 
equation 29, 

whence 

= o (as) 

,/2 

As R -• •, k, -• •, and the left-hand side of 
equation 39 approaches a nonzero, constant 
value. Hence, if the Heisenberg approximation 
is to be applicable, the right-hand side of equa- 
tion 39 must also approach a nonzero limit. 

----7 L-•-_I dp q'F(q) dq (36) 
where 7 is a nondimension• coupling constant. •'z ' 

Differentiation then yields •., 

W(k) • --•k2F(k) •• •F(•)• 1/2 ••• dp •.• o ,b ao '•o •o •o •o 

+ J q'F(q) dq (37) Big. 3. k, and 
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To find the limit of the right-hand side of 
(39) for large R it suffices to express F in the 
Taylor series 

• 1 •(•) -- • • (•)(• -- •)• (40) 
On substituting this series into equation 39 and 
requiring that the right-hand side approach a 
constant as k• --)• we find that 

F • constant/(k -- 7r) 2 (41) 

for k • 7r. Clearly, such behavior for the power 
spectrum is not admissible. 

In I, where the Heisenberg approximation 
was used, the difficulty at k -- •r was avoided by 
introducing an arbitrary cutoff in the input and 
spectrum at effectively k -- ks. Alternatively, 
we might consider trying a cutoff at k -- k•, but 
it is readily seen that this does not remove the 
difficulty. We must conclude that the Heisen- 
berg approximation cannot be used over the 
full turbulent spectrum in this problem. 

The difficulty in finding a physically meaning- 
ful spectrum with the Heisenberg approximation 
arises because this approximation always forces 
spectral energy from low to high wave numbers. 
When the input of energy has a maximum value 
away from the smallest wave number, energy 
should flow also to smaller wave numbers from 

the maximum. This is probably true in most 
real systems. Thus a transfer function is needed 
that permits energy to flow according to physi- 
cal requirements. A simple function of this type 
has been devised by Kraichnan and Spiegel 
[1962], and the solution for the spectrum is 
being investigated. It is also of interest to con- 
sider yet another approximation, that of Ko- 
vasznay [1948]. 

In Kovasznay's approximation we have 

ff _ 
where 7 has the same meaning, but not neces- 
sarily the same value, as before. Expression 42 
leads to 

- _ 
- (43) 

We see immediately that condition 38 may be 
satisfied in this approximation by requiring that 

= o 
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If we then introduce the Kovasznay approxi- 
mation into equation 29 we have no difficulty in 
solving for F. The solution is 

R 2 F(k)-64yek•7 (k•) 1-- (k•!) s/s] 

R -- I (45) 
We see that F rises from the vMue zero at k = k• 
to a maximum and then descends to zero at some 

fi•te k = k,. For k • k,, F increases mona- 
tonically. In using the Kovasznay approximation 
in isotropic turbulence we usually take F = 0 
for k • k,, since k, is normally large. Here, for 
large values of R, it is given by 

k, = I -- •k•/ 2 4•J k• (46) 
Similarly, we see that F rises as k decreases from 
the value k•, and we must impose F = 0 for 
k • k•. Our solution is thus vaSd only for 
k• • k • k,. However, for large R, k• • • 
and k, = •, and if we restrict ourselves to this 
situation, the solution may have some qu•Stative 
value. Hence, letting 

q = 

we have the following reasonably simple ex- 
pression for F: 

[ •(q) = • s• q-• (1- q- 

4 _ _ _ 1) 
For i • • q • • •, F • q-•/•, so that the Kol- 
mogoroff law is satisfied in a reasonable r•ge 
of wave numbers. In Fibre 4 we illustrate the 
form of the spectrum for several values of R/ 
2k2. 

We can readily obtain the rms velocity at 
yew large R for •s appro•atio.n; it is, aver- 
aged over all space, 

where it should be reca•ed that •/d is the unit 
of velocity. A comparison of this result •th the 
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Fig. 4. /• ---- F/k•/(R/8'•k•9 •' versus q ---- k/k• for different values of R/2k• •. 

corresponding one obtained in I using the I-Iei- 
senberg approximation is not too meaningful, 
since, as was discussed above, a modified input 
function was used there. The result given in I 
is 5 times larger than the present one, differences 
in the values of the coupling constants being 
neglected. Thus, amplitudes are very sensitive 
to approximations concerning the low-wave- 
number range, though the relative amplitudes 
of temperature and velocity are probably much 
less sensitive. 

At this point we may also investigate the 
validity of our low-Prandfi-number equations. 
In particular, we must determine how small the 
Prandfi number must be to permit the neglect 
of the convection heat transfer term in equa- 
tion 2. The calculation of the rms temperature 
fluctuation from relation 22 by means of the 
Kovasznay approximation together with the 
above results leads to the criterion 

er << 10 R (50) 
for the neglect of co.nvecfive heat trsmsfer. When 
this criterion is met, the temperature gradient is 
sensibly constant and our simplified equations 
hold. 

Concluding remarks. It cannot be said that 
the calculations presented here give very re- 

liable quantitative information about thermal 
turbulence. Itowever, they serve to illustrate 
several aspects of the problem that we should 
like to stress. 

The first point of interest is the simplicity of 
equations l l and 14, which govern thermal tur- 
bulence at very small Prandtl number. These 
equations describe a real physical system but 
still come very close to being the equations of 
homogeneous turbulence. Very small Prandtl 
numbers cannot yet be achieved experimentally, 
but in stellar atmospheres Prandtl numbers of 
the order of 10-' do occur. Moreover, in the at- 
mospheres of B0 stars the convective zones sat- 
isfy the Boussinesq approximations fairly well 
[Spiegel, 1960], though there are difficulties with 
boundary conditions and with radiative trans- 
fer. The observations of these stars indicate large 
velocity fluctuations and undetectable convec- 
tive heat transfer, just as we would expect from 
our discussion. It would seem that for these 

star•, at least, our present considerations are 
relevant. 

Another interesting feature of the low- 
Prandtl-number case is its implication for the 
Malkus theory. We have seen that as • -• 0 the 
convective heat transfer vanishes, and fixing 
the boundary temperatures fixes the total heat 
transfer. Thus the concept of maximum heat 
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transfer cannot be employed. Further, in the 
limit as tr --) 0 there is no boundary layering 
and the well-known R •/' dependence of heat 
transfer should not hold. Yet this does not seem 

deducible from the Malkus approach, which 
shows no Prandtl-number dependence on heat 
transport. It is interesting, however, that the 
first corrections (in tr) to the temperature gra- 
dient can be estimated from our present results, 
and these do indicate the incipience of a boun- 
dary layer. 

We must nevertheless conclude that the Mal- 

kus theory in its present form does not apply 
to low-Prandtl-number convection. The reason 

for this lies in the important role of nonlinear 
terms in the low-Prandtl-number limit; these 
are the terms whose structure the Malkus theory 
does not treat. 

Finally, we must comment on the calculation 
of the velocity spectrum. The transfer functions 
employed in the preceding section leave one 
dissatisfied, and it may be hoped that new ones, 
devised for the present purpose, will improve 
matMrs. But the difficulties go deeper than this. 
A principal source of inaccuracy arose in aver- 
aging over all directions in k space. This was 
necessary in order to employ the simpler approxi- 
mations to the transfer function, but it caused 
a great loss of information. An alternative would 
be to use Kraichnan's direct-interacrion approxi- 

marion, which will permit us to preserve direc- 
tional information. Unfortunately, the equations 
resulting from Kraichnan's approximation are 
very difficult to solve, even by numerical tech- 
niques. There seems to be no alternative at 
present but to attempt such a solution if the 
thermal turbulence problem is to be attacked 
directly. 
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