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Abstract. Homogeneous and isotropic turbulence is an example of a system of random fields 
invariant with respect to a group of motions. Along with homogeneous and isotropic fields, lo- 
cally homogeneous and locally isotropic ones play an important role in turbulence theory; such 
local fields may also have an accurate mathematical definition. The rando.m fields invariant 
with respect to groups of transformations different from a group of Euclidean motions can also 
be considered; the 'spectral representation' of such a field and of a corresponding correlation 
function often has an unusual form, although its sense remains the same. The algebraic theory 
of group representations gives the general method of obtaining the spectral representation for 
the fields. The examples of homogeneous random fields on a sphere and fields in a semiplane 
invariant with respect to all similarity transformations present interesting examples of random 
fields invariant with respect to 'motions' of special type which might be of some importance 
for turbulence theory. 

1. It is well known how important for the de- 
velopment of the statistical theory of turbulence 
was the idea of Taylor [1953], who suggested 
the investigation of the simplest model of homo- 
geneous and isotropic turbulence. So far almost 
all the results obtained in the statistical theory 
refer either to the particular model or to some 
of its simple generalizations. In the present paper 
we shall try to find out why homogeneous and 
isotropic turbulence is so convenient for the- 
oretical study and shall point out some general 
mathematical considerations that make it pos- 
sible to investigate a number of other turbulent 
flows satisfying certain statistical symmetry con- 
ditions. 

The most important advantage of homogene- 
ous and isotropic turbulence is obviously that 
the presence of strict symmetry conditions 
sharply decreases both the number of different 
moments (multiple correlations) characterizing 
the turbulence and the number of variables upon 
which the correlations depend. For example, the 
general turbulent flow of a compressible fluid has 
six different double velocity correlations, depend- 
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ing upon seven variables, whereas in the homo- 
geneous and isotropic case we shall deal with 
only two different double velocity correlations 
depending upon the two variables r and t. It is 
clear that the stricter symmetry conditions im- 
posed on turbulent flow involve a simpler form 
for all its statistical characteristics and thus 

make the development of a comprehensive sta- 
tistical theory of a corresponding turbulence 
more probable. It is primarily due to this. fact 
that the full statistical description of arbitrary 
turbulent flows still remains a rather hopeless 
problem, and all the concrete results of statisti- 
cal theory available refer to particular classes of 
flows, satisfying rather strict symmetry condi- 
tions. The case of homogeneous and isotropic 
turbulence has the further important advantage 
over the general case that effective description 
of all the double correlations admitted for a 

homogeneous and isotropic turbulence is pos- 
sible, and this is closely related to the existence 
of the spectral representation of homogeneous 
and isotropic random fields. We shall discuss 
this last advantage and some of its generaliza- 
tions. 

2. The term 'random field in the n-dimensional 

space R•' will be used for the set of random 
variables u(x) corresponding to all the points 
x - (x•, .-. , x•) of R• and having definite 
probability distributions for field values in any 
final sets x•, .-- , x• of points. It is clear that 
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for the theory of turbulence only the cases of 
two-, three-, and four-dimensional space R, are 
of interest. For simplicity we shall consider only 
random fields with zero mean values u(x) = 0 
(the bar above will always denote mathematical 
expectation); the last condition will be fulfilled, 
for example, for the field of fluctuations of any 
hydrodynamical quantity of turbulent flow. 
The most important statistical characteristic of 
the random field u(x) is its correlation function, 
or more precisely double correlation function, 

B,,,,(x', x") = u(x')u(x") (1) 

This function depends on 2n variables x/, ... , 
xd, x•", .-' , xd'. However, it is not an arbitrary 
function of 2n variables but positive definite, 
that is, such that, for any integer m, any m 
points x•, --- , x• from R, and any m real 
numbers a•, --- , am, the inequality 

• B,,,,(xi, x,)aia, > 0 (2) 
i,l-1 

holds. Unfortunately, condition 2 is not effective: 
in the general case for the given function 
B•(x', x") it is difficult to verify whether con- 
dition 2 holds or not. Therefore for general 
turbulent flow it is usually difficult to say 
whether the correlation functions computed 
theoretically from some hypothesis which seems 
quite reasonable satisfy this necessary condition. 

Now let us suppose that the field u(x) is 
homogeneous, that is, such that the function 
B•(x', x") depends only on the difference 
r = x" -- x'. Then according to the Bochner- 
Khinchine theorem in the case of the con- 

tinuous spectrum (which is the only one required 
for the turbulence theory) the function B•(r) 
will be positive definite if and only if it can be 
represented in the form 

where F..(k) is a nonnegative function, that is, 
when the Fourier transform of the function 

B..(r) is everywhere nonnegative. In the case of 
the set u(x) = {u•(x), --- , urn(x)} of several 
homogeneous and homogeneously connected 
random fields the similar requirement to the 
correlation matrix 

= + O (4) 

has the following form' the functions 
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must be represented as the integrals 

where the matrix [[F•(k)[[ at any k is non- 
negative definite. 

From the possibility of the spectral repre- 
sentations 3 and 5 of the correlation functions 

B..(r) and the correlation matrices B•(r), it 
follows that the homogeneous fields u(x) and 
u•(x) can be represented in the form of Fourier- 
Stieltjes integrals 

Here Z,(dk) is the random complex additive 
function of n-dimension interval dk satisfying 
the relation 

dk ! * ! z.( )z.(& ') 

= •(k' -- k")F,.,(k') dk' dk" (7) 

where $(k) is the Dirac function, the asterisk is 
the sign of a complex conjugation, and Z•(dk), 
j = 1, .-- , m is the system of the similar 
functions for which condition 7 is replaced by 

Z •( &') Z*, ( &") 

= (•(k' -- k")Fi,(k') dk' dk" (8) 

The spectral representation (6) of the fields 
themselves together with relations 7 and 8 show 
that the spectral functions F,,(k) and F•(k) 
have a clear physical meaning of the distribution 
of fluctuation energy over the spectrum of wave 
vectors; the spectrum functions Fi•(k) have a 
similar meaning. The possibility of using the 
ordinary analytical tool of Fourier transforms, 
arising from (6), for the study of homogeneous 
turbulence facilitates essentially the develop- 
ment of a mathematical theory of homogeneous 
turbulence; for this reason the requirement of 
homogeneity is of greatest importance in the 
statistical theory of turbulence; see for example 
Batchclot [1953]. 

3. Let us now suppose that the fields u(x) 
and u•(x) are not only homogeneous but also 
isotropic. In the case of a scalar field u(x), such, 
for example, as the field of pressure or tem- 
perature fluctuations, the function B..(r) must 
depend only on r - Ir I and F..(k) must depend 
only on k -- Ikl. After integrating in (3) on all 
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the angular variables we find that the class of 
correlation functions B.u(r) of a homogeneous 
and isotropic scalar field in Rn coincides with 
the class of function represented in the form 

fo = 
where J(n -- 2)/2 is the Bessel function of the 
order (n- 2)/2, and •(k) is any nonnegative 
function; see Schoenberg [1938]. The function 
•(k), which differs only by numerical multiples 
from •-• F•(k), can be determined from B•(r) 
with the help of the follo•ng conversion formula 
corresponding to (9): 

•(k) • • (kr)•/•J(•-•)/•(kr)B•(r) dr (10) 
Equations 9 and 10 with n • 2 or n: 3 are of 
interest for the statistical theory of turbulence; 
still more important, however, are the similar 
equations for vector homogeneous and isotropic 
random fields u(x): •u•(x), ..- , u•(x)] in R•, 
in view of the particular importance of the 
investigation of velocity fluctuations in isotropic 
turbulence. For such vector homogeneous and 
isotropic fields the matrix B•i(r) can be expressed 
by means of the scalar longitudinal and trans- 
versal correlation functions B•(r) and B•(r) by 
the famiSar equation 

Bii(r) Bll(v) -- Ban(r) 
r 

found by yon Kdrmdn and Howarth [1938]. The 
general form of the functions B•(r) and B•(r) 
in (11) is given by the equations 

+ - 
= 

where •,(k) and •(k) are two arbitrary non- 
negative functions, w•ch can easily be deter- 
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mined from B,,(r) and Bn•(r) with the help of 
the special conversion equations similar to (10) 
(see Yaglom [1957]; for the case n • 3, particu- 
larly important for the theory of turbulence, 
corresponding equations have been given by 
¾aglom [1948] and Moyal [1952]). Thus, to 
verify whether the two given functions B•(r) 
and B•(r) can be the longitudinal and trans- 
versal correlation functions of the homogeneous 
and isotropic vector field in R• it is only necessary 
to evaluate the corresponding functions 
and •(k) and to see whether both of them 
would be nonnegative or not. 

•en the given vector field is incompressible, 
that is, solenoidal, formulas 12, 13, and the 
corresponding conversion formulas are especially 
simple, since then •,,(k) • 0; see Batchelor 
[1953]. 

As the homogeneous and isotropic random 
fields u(x) and ui(x) are natura•y homogeneous 
they can be represented in the spectral form (6). 
Only this form, wMch does not take into account 
the condition of isotropy, is generally used in 
works on turbulence. If, however, we do take 
the isotropy of the fie]ds in formulas 6 into 
consideration they will assume a more special 
form, which is not very popular but may be 
useful in some turbulence problems. So the 
isotropic scalar field u(x) on the two-dimensional 
plane R• and in three-dimensional space R• in 
the polar or, correspondingly, spherical coordi- 
nates will be written 

= u(r, 

= • e im• Zm(kr) dZm(k) (14) 
m•--• 

and 

u(x) = u(r, O, •) = • • •zmY•(O, •) 
l•O m•--l 

ß •kr)t/• dZ,m(k) (15) 
where ytm( O, •) are spherical functions 

••2•(l•)(l• m)' -- m)'• 1/• 
and Z•(k), Zlm(k) are random functions with 
noncorrelated •crements satisfying the equations 

•Zm(•') 
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and 

dZ•,•(k') ') 
• •l• •mn •( k! -- ktt)•(kt) dk' dk" (17) 

(see Yaglom [1961]). Similar spectral representa- 
tions may also be written for vector homogeneous 
and isotropic fields; in t•s c•se instead of 
ordinary spherical functions so-called vector 
spherical harmo•es must be used; see section 6. 

4. In •he statistical •heory of turbulence, 
homogeneous and isotropic turbulence is studied 
much more thoroughly th•n other •ypes. For 
such turbulence the cNss of M1 possible correla- 
tion functions of •ny scM•r hydrod••cal 
field coincides with the cNss of functions of the 

form (9), where n • 3 •nd •(k) • 0, •nd the 
class of possible lon•udin•l •nd transverse 
correNfion functions of the velocity field coincides 
•th the class of functions of •he form (12) 
and correspondingly (13), where n • 3 and 
ß •(k) • 0, •(k) • 0 for compressible fluids 
and •(k)• 0, •(k) • 0 for incompressible 
fluids. Besides •his, there is • series of works 
stud•ng •xisymme•fic •urbulence, that is, 
homogeneous turbulence invariant to •ll rota- 
tions on the •xis p•mllel to • given direction Oz. 
The correNfion functions B•(•) = B•(x, y, z) 
of such a•symmetfic turbulence will evidenfiy 
depend on two •rguments z •nd p= •x • • y•. 
The functions B•(p, z) •s the functions of the 
v•ri•ble p will h•ve •he form (9) with n • 2, 
•nd •s the functions of z •hey will be exp•nded 
into ordinary Fourier integrals. From t•s it 
follows that the general expression for the 
correlation function B•(p, z) c•n be given by 
the formul• 

z) 

fffo © = e'•'Jo(•p)•(•, k) d• dk (18) 

where •(½, k) is nonneg•five function of two 
v•ri•bles. SimiNrly the correNfion m•trix B•i(r) 
of the velocity field of •xisymmetric •urbulence 
c•n be expressed •th the four sc•Nr functions 
B,,(p, z), B•(p, z), Bnn(p, z), •nd B•,(p, z) of 
two variables p •nd z, where the function 
B,•(p, z) will h•ve the form (18), the function 
B•(p, z) will h•ve the form 

z): ' 0(p) ' 

+ (lS) gp 

with nonnegative q•(K, k) and q•.(K, k), and the 
functions B,n (p, z) and Bz,(p, z) will have 
analogous forms. 

For meteorological and oceanographical appli- 
cations the more general case of turbulence in 
the semispace over the given 'wall' is of much 
greater interest. Such turbulence is invariant to 
all rotations and translations in the plane Oxy, 
but it is not invariant to translations along the 
axis Oz. In this case the expansion into the 
Fourier integral (3) and the more general forms 
(9) or (12) and (13) with n - 2 is possible only 
with respect to the variables x, y, and p. More- 
over, the correlation functions B•,,(p, z', z"), 
Bz•(p, z', z"), etc., will depend on two heights 
z' and z", and in respect to this last dependence 
the condition of positive definiteness will be 
ineffective. In section 7, however, we shall see 
that in some meteorological problems the cor- 
responding turbulence in semispace will satisfy 
additional symmetry conditions of a special 
kind, permitting us to obtain the explicit for- 
mula for the most general correlation functions. 

5. It is known that the general formulas 3 
and 6 for the theory of the homogeneous random 
field in n-dimensional Euclidean space may be 
generalized for the case of homogeneous random 
fields u(g) over an arbitrary locally compact 
commutafive group G; see Weil [1940], Raikow 
[1945], and Kamp4 de F•riet [1947]. For such 
fields the exponents e •k• and e • in formulas 3 
and 6 need only be replaced by the characters 
x•(g) of group G. However, in the statistical 
theory of turbulence we usually deal not with 
the homogeneous fields over the group but with 
the homogeneous fields u(x) over some homo- 
geneous space if[ with the given group G (usually 
noncommutafive) of motions. For such homo- 
geneous fields u(x) the correlation function 
B•(x', x") satisfies the equation 

B•(x', x") = B•(gx', gx") (20) 

The works of Krein [1950], Gel/and [1950], and 
Yaglom [1948; 1961] are devoted to the study of 
the general form of positive definite functions 
B•(x', x") over different spaces if[ satisfying 
(20); in Yaglom [1948; 1961] the question about 
the analogies of the spectral representation (6) 
for the fields themselves is also considered. In 

the concrete applications to the problems of 
turbulence theory the space if[ is usually sym- 
metrical Riemannian space; according to the 



SYMPOSIUM ON TURBULENCE IN GEOPHYSICS 3085 

work of GelSand [1950] the general form of the 
corresponding correlation functions B•(x', x") 
of scalar homogeneous fields u(x) in the case of 
continuous spectrum can be written 

s•(f, f•) = f• m('•( f, f•)•(•) • (•) 
In this formula H(•)(x •, x") are all possible 
zonal spherical functions over fit, defined in the 
works of Godement [1952], Berezin and GelSand 
[1956], and others, k is a parameter enumerating 
different zonal spherical functions, K is the set 
of all k, and •(k) is a nonnegative function on 
K. The homogeneous random field u(x) can be 
written 

_, (•)z,(a•) (•) 

where the functions H• (•)(x) with different l are 
all possible spherical functions corresponding to 
the given zonal spherical function H(•(x, 
x0) = H•(•(x), and Z•(dk) are random additive 
functions of the set dk satisfying the condition 

(see Yaglom [1961]). 
•ere the space • is ordinary EucSdean 

space R• formulas 22 and 23 change into for- 
mulas 10 and 14-15. If • is a non-Euclidean 

Lobachevski plane, formulas 22 and 23 give 

B..(r) = •• P_•/•+••(cosh r)•(k) dk (24) 
•(r, •) = • •,e •'• 

ß P'_l..••(•o•h r) •Z,(r) (25) 

where r is the non-EucBdean distance, (r, •) are 
non-EucBdean polar coordinates, P• are the 
special solutions of the Legendre differential 
equation, P• • P•o, and y• are normaBzing 
constants expressed by means of r function 
[Krein, 1950; Yaglom, 1961]. And if • is a 
sphere S of EucBdean space R,, formulas 22 and 
23 give the following expressions for the cor- 
relation function B•(0) of an arbitrary homo- 
geneous field over S and for the field u(O, •) 
itself' 

B,,,,(O) -- • •,P,(cos O) (26) 
•=0 

•,(o, •,) = • z,,•(o, •,) (27) 
l=O m=--l 

Here • are nonnegative constants and Z• are 
mutually noncorrelated random variables with 
covariances depending only on l. The results 
(26) and (27) obtained earlier by Schoenberg 
[1942] and Obuchov [1947] may have some appli- 
cations to geophysics in connection with in- 
vestigations of the statistical macrostructure of 
the meteorological fields all over the world (the 
influence of zonal climatic belts can then be 

taken into account as a small additive per- 
turbation). 

6. Formulas similar to (22) and (23) can also 
be obtained for vector homogeneous random 
fields on the wide class of the spaces fit with the 
transitive group G of motions. Then instead of 
ordinary spherical functions we must use some 
more general functions of the same kind; see 
Yaglom [1961]. Here we shall briefly consider 
only the problem about the general form of 
vector homogeneous fields u( 0, •o) on the sphere 
S; the solution of this problem may be applied 
to the investigation of the very large-scale 
characteristics of the upper winds over the 
world. The vertical component of the vector u 
evidently forms the scalar field over S studied 
in section 5, so that we must investigate only 
the two-dimensional field u(0, •) = { u s(0, •o), 
u•(O, •o)}, where us and u• are components of 
the vector u along the meridian and parallel. 
The functions more general than the usual 
spherical functions mentioned above in this case 
will be the well-known spherical vector harmonics 
(see Morse and Feshbach [1953]; Gelfand, Minlos, 
and Shapiro [1958]). According to the notation of 
Gel]and, Minlos, and Shapiro [1958], instead of 
functions us(0, •) and u•(0, •) we must use the 
complex functions 

•,+ ( o , •o) = •, • ( o , •,) + •u,( O , 

•,_(0, •) = u• (o, •) - i•(o, •) ( 

We shall expand these functions into the series 

/=0 m=--l 

•me P•(cos (29) 
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l•O m•--l 

__. E r-•-- im• O) (30) 

where P•m•(COS 0), P_•m•(COS 0) are the functions 
introduced by Gelfand and collaborators which 
differ from the functions 

dP•(cos 0) m 
dO • P•(sin 0) sin 0 

only by numerical multiphcrs. It can easily be 
shown that for the homogeneous field u(0, •) 
random coe•cients Z• + and Z•- will satisfy 
the equations 

+ •+* Z•mZ[2 = • $•a•k = (31) 
+ Z•Zi• = • $m•C• 

where a• • 0 and c• are real numbers such that 
[c•[ • a•. Now with the help of (29) to (31) we 
can obtain the following formulas for the longi- 
tudinal and transverse correlation functions 

B•(0) and Ban(O) Of our vector field u(0, •)' 

• = dO • 

I dP,(cos 0)1 sin 0 •/• (32) 

Bnn(O) = l•=ml [ 

where 

and 

(1) 
l 

1 dP,(cos O) 
sin 0 dO 

q_ q)•2, d",(cos O) 1 (33) dO -ø 

q)•) _ 2l q- 1 -- 2l(l q- 1) (a, q- 

21q- 1 

'I'•) = 2l(l q- 1) (a, -- c,) 
are nonnegative constants. Conversely, any 
functions of the form (32) and (33) with non- 
negative qh a) and qh (') can be longitudinal and 
transverse correlation functions of some homo- 

geneous random vector field over the sphere. 
The results (29) to (33) can also be obtained 

with the help of the transition from the com- 
ponents uo(O, •) and %(0, •o) to the correlated 
scalar velocity potential and stream function 

and the following expansion of the two scalar 
functions in the series of the form of (27). 

7. Atmospheric turbulence in the conditions 
of free convection is a very important geo- 
physical example of nonhomogeneous turbulence; 
see Obuchov [1960]. Here we are dealing with the 
turbulence in the semispace z >_ 0 (where z - 0 
is the surface of the earth), which is invariant 
to all translations, rotations, and reflections in 
the plane Oxy, but which is not axisymmetrical. 
If we disregard the thin layer of air near the 
earth surface and consider only the points of 
observation with the mutual distances greater 
than the internal scale of the turbulence, we 
can neglect the friction and heat conductivity 
terms from the hydrodynamical and thermo- 
dynamical equations; then the full system of 
equations becomes invariant to all similarity 
transformations of the form 

x.-->kx y--->ky z--->kz k > 0 (34) 

(see Obuchov [1960]). More precisely, the equa- 
tions of free convection permit similar solutions 
of the form 

u,(,O = 
P(X) = 
T(x) ---- z2a-lTt(x)J 

(35) 

where x - (x, y, z), and ui(x), p(x), and T(x) 
are the velocity, pressure, and temperature at a 
point x of fluid, and u•'(x), p'(x), and T'(x) are 
new random fields invariant to all translations, 
rotations, and reflections in the plane Oxy and 
to all extensions (34) (from dimensional con- 
siderations it is easy to see that a - 1/3). 
Then correlation functions of the fields ua', p', 
and T' and longitudinal and transverse correla- 
tion functions of the vector field (u,', u/) will 
depend only on two arguments z"/z' and 
where r is the horizontal distance between the 

points of observation. 
Now the general form of the positive definite 

functions B(z"/z', r/F) can be obtained with 
the help of the general theory given in Yaglom 
[1961]. Let us consider the simpler case of a 
two-dimensional random field in the semi- 

plane -- co <x < co, 0 < z < co invariant 
to all translations and reflection of the form 

x-•x + a, z-•z and x--•-- x, z--•z and 
to extensions x --• kx, z --• kz with k > 0. 
The corresponding correlation function also will 
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have the form of the function B(z"/z', r/z •) of 
two variables (where r- Ix" -- x'l). The 
general form of this function can be easily 
obtained from the results of GelSand and Naimark 
[1947]. Here 

• (-Zz" r) (36) l,l•-I 

where 

ß t) 

+ + t)(1 + (5- i, •2 ;)•i ,=• (37) 
ß (k) is an arbitrary nonnegative function, and 

an arbitrary infinite nonnegative definite 
matrix, that is, the set of numbers • such that 

ll%11; 0 

for all n = 1, 2, 3 ..- . The different correlation 
functions are then defined by the choice of the 
nonnegative function •(k) and the inflate non- 
negative deflate matrix •. The general form 
of the correlation function B(z"/z', r/z') in the 
t•ee•imensional ease is the same but with 

d•erent functions H•(•, v). Using (36) we can 
also obtain the analogue of the speetrM repre- 
sentation for random fields describing atmos- 
pheric turbulence under conditions of free 
convection; but this will be given in another 
a•iele. 
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