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Abstract. Two important types of probing of a turbulent velocity field u(r, t) are the Eulerian 
probings defined by dr/dr -- v (v constant) and the Lagrangian probing defined by dr/dr -- u(r, t). 
Explicit expressions are derived for the transformation of autocorrelations and power spectra 
obtained by Eulerian and Lagrangian probing in the case of fully developed isotropic and homoge- 
neous turbulence. The derivations are based on a statistical representation of the turbulent 
velocity field using the results of the equilibrium theory of turbulence. The Taylor hypothesis is 
verified in the limit of high probing velocities. The Itay-Pasquill conjecture relating the Lagrangian 
and Eulerian power spectra results as an approximation to the transformation equations. Ap- 
plication of the results to the theory of turbulent diffusion is indicated. 

Introduction. It is the aim of the present 
investigation to establish the relation between 
the Eulerian and Lagrangian correlations in the 
case of fully developed isotropic homogeneous 
turbulence. 

In the reference frame in which the average 
velocity of the fluid is zero, Eulerian and 
Lagrangian probings of a fluctuating velocity 
field denoted by 

are characterized by the equations 

(1) 

dr/dr = v (Euler) 
and 

dr/dr = u(r, 0 (Lagrange) (2) 

where v is a constant velocity. 
The two types of probing in general lead to 

different functional forms of the scalar auto- 

correlation coefficient defined by 

R(r) -- u(O-u(t q- r)/3u '• (3) 

where u' is the rms of any single component of u. 
The statistical model. In formulating the sta- 

tistical model to be used here we shall be guided 

x Based on a paper presented at the International 
Symposium on Fundamental Problems in Turbu- 
lence and Their Relation to Geophysics sponsored 
by the International Union of Geodesy and Geo- 
physics and the International Union of Theoretical 
and Applied Mechanics, held September 4-9, 1961, 
in Marseilles, France. 

partly by the statistical theory of shot effect 
noise [Rice, 1944, 1945] and partly by the 
Helmholtz theorems. 

We shall assume that the random part of the 
velocity field in fully developed turbulence may 
be written as a sum 

u(r, t) -- • F•(r-- R•) (4) 
i 

over a very large number of small overlapping 
disturbances. Each disturbance corresponds to 
one of the many degrees of freedom in the 
turbulent velocity field and is characterized by 
its position Re(t) in space and a number of time- 
independent parameters describing the func- 
tional form of Ft. To ensure homogeneity we 
require that at any instant the distribution of 
disturbance positions is random and that their 
number within unit volume is Poisson-distributed 

with an average •. Isotropy is ensured by 
requiring the distribution of orientations of the 
F•'s to be isotropic, and finally we shall obtain 
stationariness by assuming the distributions of 
all parameters to be time independent. 

To comply with Helmholtz theorems we shall 
further assume that the disturbances participate 
in the fluid motion and shah express it by the 
equations 

- - - (5) 
dt k 

We shall briefly justify the above assumptions 
using arguments from the equilibrium theory of 
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turbulence. In this theory the turbulence may 
be characterized by the size of the energy- 
containing eddies },• and the rms of the velocity 
u'. Defining the Reynolds number by Re ,., 
)•u'/•, the dissipation scale is given by },a--- 
)•Re -8• and the number of degrees of freedom 
per unit volume is given approximately by 
•t ,.0 •-• ,.0 •-• Re9•; we note that this is a 
very large number, which will be used later as 
an expansion parameter. 

Assuming the average disturbances F• to have 
a range },, we may estimate the velocity fluctua- 
tions within a disturbance from Kolmogoroff- 
Obukhov's law to be less than u x' •-0 u'()•/ 
)•)•. This may be used to estimate )• in this 
theory, since the fluctuating part of the velocity 
will be given by the uncorrelated sum of all 
disturbances. In this way we obtain the in- 
equalities 

k > •,•Re -27/44 >) k• (•) 

from which a few important conclusions may be 
drawn. 

First, we realize that since }, >) },• it is per- 
missible to neglect viscosity and use the Helm- 
holtz theorems when deriving the equation of 
motion for 1t•. Second, we see that there is 
indeed a strong overlap of disturbances, since 
the number within an average range is N • 
tzk • • Re •". Finally, we see that it is per- 
missible to neglect the time dependence of the 
parameters describing the shape of a disturbance, 
since the velocity of deformation is smaller than 
u x' ,.0 u • Re -•", which is small compared with 
the average translational velocity u'. 

The above considerations may also be used to 
estimate another expansion parameter 

(n > m > 0) (7) 

where averages are carried out over a spectrum 
E(k) obeying the Kolmogoroff power law in 
the range k•-• • k • )•-• and having some 
kind of cutoff at k 

The Eulerian-Lagrangian transformation. To 
bring forward the essential points without too 
much complication in notation we shall first 
consider the one-dimensional case, neglecting for 
simplicity the motion of the disturbances. In 
this simple case expression 9 for the Eulerian 
correlation Rr(•) may easily be obtained by 

inserting the trivial identity 

= •"•u '• (S) 

into the Taylor expansion for Rr(•) 
. , 

(eu] •(•) = • (-1)• • • ar/• (•n)• 
: •• •(•) •o• (•) (•) 

where the summation has been performed under 
the integral over k. 

Using the statistical model defined above, we 
can exp•citly express a mixed moment or 
expectation value 

H (a•u/a•) • 
m 

of any product of u and its space derivatives in 
terms of a polyno•um in • •th coe•cients 
containing se•-invafiants of a t•e defined by 

(H[m] TM) = dr H dr ] (10) m m 

where ( )• indicates avera•ng over all param- 
eters in F•. 

Two important special cases are 
, 

•dr •] : y([n] •) • k•% '• (11) 
and 

-2-; • (__2n) .• s). (2n)! u 2•n ! /z"([ o] = u '2• (12) 
The first expression may be used together with (7) 
to establish the relation 

e <[n- m]a([m] a) = ([n]•)([o]•) (n > m > 0) (la) 
w•le the second expression, where only •he 
dominant term in the expansion in g has been 
retained, demonstrates that the model •elds a 
Gaussian distribution for u in the h•t Re • •. 

Using the above-mentioned expression for the 
mixed moments and under the same simphfying 
assumptions used in deriving the Eulerian cor- 
relation above, it is now possible to obtain the 
follo•ng expansion for the Lagrangian average 
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Fig. 1. The universal Lagrangian kernel func- 
tion K•(•/UIk) as a function of •/uq•. Mean and 
variance of • are given by &/uq• = V'8/,r = 1.60 
and •/Uq• = 0.67. Case L corresponds to La- 
grangian probing. Case B corresponds to probing 
with a 'balloon' moving with a random velocity us 
with components distributed according to a Gaus- 
sian with rms u'e. 

of (d'•/dt")' in terms of •, e, and the semi- 
invariants 

•/•: •)•j - •.•. 

ß (Eo]•)"(En] •) X {1 + •R(n) 
+ 1 [ -- 

. ([-]•)([o] ") 

+ .(n- 1) ([o] •) ] a• ([o]") "+ ... 

+IE ]+ ...} 
• (•-)• u '•. k"% '• (14) -- 2-hi 

where R(n) is a rational algebraic function of n. 
The last equa•ty is obtained • the •t Re • •. 
Inseging t•s result in the Taylor expansion of 
R• (•), we obt•n afar perfor•ng the summation 
under the integral 

•(•): a•(•) exp E-•.'•,• •] (1•) 

Thus, under the above simpering assumptions 
the Lagran•an correlation is obta•ed by trans- 
forming the energy spectrum •th a Gaussian 
kernel, whereas the Eule•an correlation is 
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obtained in the usual way by taking its cosine 
transform. 

Three-dimensional •ormulation with moving 
disturbance centers. The procedure just de- 
scribed may also be applied to the three-dimen- 
sional scalar averages (3), taking into account 
the equation of motion (5), for the disturbance 
centers. A careful evaluation yields the following 
result for the Lagrangian average of (d•u/dt•) 2 

7i:/,, --• { Z] [(- - u,). v]'•, I 

where 

:•,, 2n + 2)} (2u,•),, (17) 
since both u and U have the same Gaussian 

distribution for each of their components. The 
moment k "• should in the three-dimensional case 

be taken over the energy spectrum 

E(k) = 2 drE«i(r) + õg(r)] cos (kr) (18) 
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Fig. 2. Examples of Eulerian kernel functions for 
v/• u' --- 0.1, 1, and 10. 
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where ! and g are the usual longitudinal and 
transverse spatial correlation coeificients. 

Insertion of the above result into the Taylor 
expansion of RL(•) and performance of the 
summation under the integral yields the relation 

•(•) = fo © a•(•) 
(19) 

Similarly a relation may be derived for the 
Eulerian correlation obtained with a constant 

probing velocity v 

u- a•(•) •(•) = v 

(20) 

Applications and discussion. Using the well- 
known relation 

P(•o) = -•fo a•(•) •o• •, (20 

we may now express the Lagrangian and 
Eulerian power spectra as transforms of the 
energy spectrum using corresponding charac- 
teristic kernel functions. In the Lagrang]an case 

o.I 
o.1 1 

•11/•-u' • 

I I , 

CHARACTERISTICS OF 

EULERIAN KERNELS 

Fig. 3. Mean value and variance of Eulerian 
kernels in dimensionless units as a function of 

we obtain 

ß • n/• u'• 1 (•) 
where the u•versal Lagrangian kernel function 

K• (z) = •/• z • exp (-- z•/2) (23) 
has the form shown in Figure I with mean 
value • = •/• = 1.60 and variance z TM -- • = 
0.67. If we approximate K•(z) by a • function, 
we obtain the rough but simple relations•p 

p•(•) • • u TM • • (•) 
The analogous transformation for the Eulerian 

power spectrum has the form 

P•(•) = •• a•(•) 
' • •' • u"/u'• ( 

where the Eulefian kernel function • given by 

yz 2 

K•(z, y) -- • (exp E-y (z - 1) 2] 
-- exp [-- y2(z + 1)2] } (26) 

In Figure 2 the shape of this function is shown 
for y -- v/%/• u' equal to 0.1, 1, and 10. It is 
seen how the function approaches the • function, 
$(z -- 1), for large values of y, yielding in the 
limit the relation 

P-(•) = •(•/0/• (•7) 

which is equivalent to Taylor's hypothesis. In 
Figure 3 the average value and the variance of 
the Eulerian kernels has been drawn in the 

range 0.1 _• y _• 10. 
Combining the above simple relations for the 

power spectra, we obtain as a first rough approxi- 
mation in the case of smooth energy spectra the 
relation conjectured by Hay and Pasquill [1960] 

_ _ , (28) P,.(co)•/•Pr(/•co) with /•'• 4 u 
Inserting the Lagrangian correlation derived 

above in the well-known Taylor [1921].equation 
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DETERMINA TION I % OF DIFFUSION 
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Fig. 4. Plot for determination of the diffusion 
parameter 

•)(t) = u' f_• • •(•)•'(u't•) 
The function T moves without change of shape 
toward larger s values with a speed proportional 
to lnt. s'-- s -In 

describing turbulent diffusion, we obtain for the 
rms displacement r' the relation 

= v(t). t 

where the time-dependent diffusion parameter 
D is given by the following integral in which 
the substitution s -- In (l/k) has been made: 

D(t) -- u' f;. dsE(e-')T(e -'+ In (u't)) (30) 
The diffusivity kernel function T has the form 

T(z)- [1- exp (--z2)]/z (31) 

The above expression for the diffusion parameter 
facilitates both the practical calculation and the 
intuitive understanding of turbulent diffusion 
problems. The function T may be approximated 
for large values of Is -- In (u 't)[ by the simple 
function exp [--Is -- In (u 't)l]. By plotting T 
and the spectrum E as a function of s, i.e., on a 
logarithmic wave-number scale, as has been done 
in Figure 4, it is seen how the shape of the energy 
spectrum will affect the time dependence of D. 
The kernel function T advances without change 
of shape toward larger scales with an abscissa 
proportional to In t, and gives rise to enhanced 
diffusion in the initial stage by making D(t) 
proportional to t. Later, when passing into the 
region where E(k) is fiat, D(t) becomes almost 
constant, and we obtain Fickian diffusion. The 
theory thus covers completely the range of 
Sutton's diffusion formula. Further applications 
and extensions of this theory to turbulent 
diffusion will be discussed by Kofoed-Hansen in 
a separate contribution to this symposium. A 
more detailed account of the present work will 
be published in a forthcoming Ris• Report. 
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