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Abstract. Since the equations of global mean flow and mean temperature (averages taken 
over a period of a year, say) are very complex in form when expressed in spherical polar co- 
ordinates, a limited problem is first considered: given the mean temperature and density dis- 
tributions, we attempt to solve the residual velocity distribution equations. The Reynolds 
stress component associated with the meridional flow of zonal velocity is a crucial factor, and, 
as a first approximation, it is taken to depend linearly on 9, the earth's angular velocity, and on 
the meridional mean temperature gradient. A series solution for the velocity distribution is 
then obtained in terms of ascending powers of •, and the meridional component series is used 
to explore the crucial influence of the Reynolds stress components on the structure of the 
meridional cellular circulation. 

1. Introduction. In this paper the atmosphere 
is thought of as a rotating, thin, spherical shell 
of air in a turbulent flow, whose energy is 
derived from the sun's heating, dominant 
parameters being the mean temperature differ- 
ence between equator and pole and the earth's 
angular velocity. The day-to-day changes in 
flow are chaotic, but when mean values are 
taken over periods of 6 months or a year a 
regular mean flow pattern is revealed. To describe 
this process quantitatively the equations of 
motion and of heat transfer, expressed in spheri- 
cal polar coordinates, are averaged over a 
suitable period of time by means of the usual 
Reynolds technique, the resulting equations 
representing a mean flow associated with aver- 
aged temperature and heating distributions 
appropriate for a 1-year or 6-month period; 
the averaging process is also carried out around 
each latitude circle, although ultimately it is 
believed to be not beyond the scope of mathe- 
matical analysis, with the aid of electronic 
computation, to incorporate a longitudinal effect 
due to the difference in flow over continent and 
sea. 

The nonlinear inertia terms and the terms 

ß Based on a paper presented at the International 
Symposium on Fundamental Problems in Turbu- 
lence and Their Relation to Geophysics sponsored 
by the International Union of Geodesy and Geo- 
physics and the International Union of Theoretical 
and Applied Mechanics, held September 4-0, 1061, 
in Marseilles, Frazee. 

describing the turbulence effects are of course 
very complex in form; in a first approach, only 
the nonlinear term involving the square of the 
zonal velocity is included and a boundary-layer 
form of approximation is employed, so that 
vertical gradients of velocity are retained and 
meridional gradients of velocity neglected. At 
this stage in developing a technique for solving 
the equations of motion in spherical polar 
coordinates it is also found necessary to neglect 
P*/Po by comparison with unity in terms in- 
volving (1 -}- P,/Po), where p0 is some suitable 
reference density and p, the deviation of density 
from this value. The eddy viscosity technique, 
used successfully in certain aspects of micro- 
meteorology and in aerodynamic studies of a 
turbulent boundary layer, is also employed here 
to express the Reynolds stresses, associated with 
vertical transport of zonal and meridional 
velocity, in terms of mean velocity gradients, 
the numerical values used for the eddy viscosity 
coefficients being extracted from available 
observational results. The Reynolds stress com- 
ponent associated with meridional flow of zonal 
velocity must be a crucial factor; we suggest 
that it is primarily thermally driven, and, as a 
first approximation, we take it to depend linearly 
on [2, the earth's angular velocity, and on the 
meridional mean temperature gradient. A solu- 
tion of the full feedback atmospheric problem 
(described by simultaneous mean velocity and 
heat transfer equations) for a given input of 
solar heating has not been attempted here, but a 
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limited aspect is considered instead. Convenient 
empirical expressions for the averaged density 
and temperature distributions are substituted 
into the mean flow equations to test various 
hypotheses by checking whether the ensuing 
equations, when they are solved, yield a reason- 
ably realistic description of the flow. In this way 
a base can be established from which we can 

develop more incisive models involving solutions 
of the thermodynamic equation also. 

2. The •ormulation o• equations describing the 
general circulation. Taking r and O to denote 
distance from the center of the spherical shell 
of air and colatitude respectively, denoting 
meridional, zonal, and vertical velocity com- 
ponents by V, U, W, pressure by p, density by 
p, and gravitational attraction on unit mass 
near the earth's surface by g', and neglecting all 
viscous stresses, since Reynolds eddy stresses 
are very much larger, the equations of zonally 
uniform motion are 

ov ov 

for meridional flow, 

OU OU t, W-rr q 

for zonal flow, and 

V 0 V U •' cot 0 
r O0 r 

Op tO0 

VOU uw 

r O0 r 

+ UVco•O) = 0 r 

OW OW VOW P-•-• W-•-r + r O0 

(2) 

( U •' -Jr- V") ) Op r = Or g' p (3) 
for vertical flow, and the associated equation of 
continuity is 

Op o 0'-• -Jr- 1-5 •r r (or•W) 
q_ 1 o r sin 0 O0 (p sin OV) = 0 (4) 

It is convenient to treat the motion as a basic 

solid rotation flow, with the angular velocity •2 
of the earth and uniform temperature, together 
with a flow relative to the rotating earth, and 

we write for the solid rotation flow V = V0 = 0, 
U = U0 = 9r sin O, W 
p = p0. The equations describing the uniform 
rotation then become 

and 

--r• 2 sin 2 0 = _10p___•o _ g, (5) 
po Or 

--rfff cos 0 sin 0 = 1 Opo po ,' oo (6) 
and writing V = v, U = f•r sin 0 q- u, W = w, 
p = p0 q- p,, p = p0 q- p,, the equations of 
flow relative to the rotating earth become 

•+ +w + po 7/ 

u cot 0q- v__w_ 29u cos 0 
r r 

= _P_a rfff sin 0 cos 0 -- __1 O_p_a - (7) 
Po po r 00 

( p.)(Ow Ow vow po •rr r O0 

u v 2flu sin 0 
r r 

and 

P*• rfff sin 2 0 = __1 0_p_a p _ g, P_a 
Po Po Or Po 

(8) 

Ou 

w 
Ou v Ou uw uv 

r r r 

q- 2f•w sin O q- 2f•v cos O = 0 (9) 

and the equation of continuity becomes 

•. ?w 1 q-P--*- 
r Or po 

rsin 000 sin 0v 1 q- = 0 (10) po 

We now substitute, into equations 7, 8, 9, 
and10, u= aq- u',v= Sq- v',w= •vq- w', 
where a, 9, • denote mean values over time 
periods long enough for u' = v' = w' = 0, and 
it is assumed that these mean values are inde- 
pendent of successive averaging periods and that 
eddy fl•etuations of p, do not contribute sig- 
nificantly to the ensuing Reynolds stress system. 
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The continuity equation 10 is then valid with 
a and ½ written for u and w, and equation 7 
becomes 

cot 0 
__ 

q_ wv _ 2•2a cos 0 
r 

o 1o + ½'J) + r 

! ! 

+ (v%' - Ju') cot 0 -3- 3w v 
r r 

+ * r po 

q- v' sin 0 p* 
r sin 0 O0 po 

= P* r•2 • sin 0 cos 0 -- __10p, (11) 
po Po r O0 

and two similar equations are obtained for the 
mean flow in the zonal and vertical directions; 
they are seen to incorporate a complex Reynolds 
stress system, but many components are probably 
very small and negligible. 

3. The mathematical approximations, physical 
assumptions, and boundary conditions used in 
[ormulating the model. To make the system of 
mean motion equations mathematically tract- 
able two basic approximations are made: (1) Since 
the ratio of (tropospheric thickness)/ (radius of 
the earth) is very small, the usual boundary- 
layer approximation is made, and consequently 
vertical gradients of velocity are retained, merid- 
ionM gradients of velocity are neglected, shearing 
types of eddy stresses are assumed dominant, 
and certain terms involving 1/r are neglected. 
(2) p,/p0, a function of r and 0, is neglected by 
comparison with 1; taking po at a reference 
point on the surface, it is found that p,/po 
varies between zero and about 2/5 at the 
tropopause, and so the error involved is probably 
small but increases as the tropopause is ap- 
proached. The continuity equation 10 becomes 

1• 0 (r.O½) q_ 1 0 (sin Off) = 0 (12) r Or r sin 0 O0 

•rr -[ r O0 r 
__ 

cot 0 +- 
r 

cos 0 = 10p, 
por 00 

0 sin 0 cos O-- •(v•w •) 

q- 2• cos 0 q- 2f•Wsin 0 

0 (u'w')- 0 = -o-3 
and 

_2 _2 
O• fi 0½ u v 

• •rr q- 2•2a sin 0 rO0 r r 

(13) 

(14) 

10p, g'P-•'3- P*r s in 2 0 (15) 
Po Or Po Po 

The meridionM gradient of u'v' is retained in 
equation 14, as it is this stress component that 
assists in driving angular momentum from low 
to high latitudes. It must be thermally driven 
by the temperature difference between equator 
and pole, and it plays a crucial part in the 
circulation. In various aspects of microme- 
teorology and aerodynamics the eddy viscosity 
formulation has been successfully employed in 
constructing a description of turbulent boundary 
layers: the work of Phillips [1956], employing 
Cartesian coordinates, also suggests that it may 
be used in formulating a general circulation 
model. We write then, for u'w • and Ww •, the 
relations 

v'w' = -- K,•,(O•/Or) (16) 
and 

! ! 

u w = - (17) 

where Kin, is associated with vertical mixing of 
mcridional velocity and Kz, with vertical mixing 
of zonal velocity. As a first approximation, 
and Kz, are assumed to be independent of 
position, and u•v • is assumed to depend linearly 
on 9 and on the meridional mean temperature 
gradient $T/r • 0; and we write 

= oo) 

and the equations of mean motion become Since the gradient of mean temperature is from 
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equator to pole, u'v' is negative everywhere, 
i.e., toward the pole, and is consequently in the 
correct direction. Phillips [1956] finds that 
magnitudes of about 109 ½m see units for 
and K. lead to realistic circulations, whereas 
the work of Tucker [1960] in analyzing observed 
velocity values suggests numerical values of 
about 106 cm' set -x for K.. We find that values 
of about 109 for K,• and about 106 for K, lead 
to fairly realistic calculated meridional circula- 
tions. A mean value for (k•2) in (18) is calculated 
to be about 10 • cm sec øC units by dividing 
values of (u'v'), deduced by Tucker, by the 
meridional gradient of mean temperature. 
(During the symposium discussion, however, it 
became clear that the model can be improved 
by allowing k to vary with •' so that the effect 
of meridional temperature gradient varying with 
•' can be incorporated. We note also that the 
observed values of (u'v') could not be used 
directly, as they must depend on •2, and we 
consider a solution in powers of •2.) 

A convenient empirical formula is now required 
for p./p9 and T•T9. The actual height of the 
tropopause varies from about 15 km at the 
equator to about 10 km at the pole, and, although 
we hope to extend the analysis to this practical 
case, we have assumed in our model that the 
height is independent of latitude. The analysis 
is then conveniently expressed in terms of the 
variable •' defined by 

r- a(1 + •'•) (19) 

where a denotes the earth's radius and ! -- h/a, 
h being the height of the troposphere, so that 
the value of •' lies between 0 and I in the tropo- 
sphere. A reasonably good empirical mean annual 
•emperature formula (giving a zero vertical 
temperature gradient at the tropopause) is 
found to be 

= Ao + 

+ 0){ A: + 

where P• (cos O) is a Legendre function and T• 
a convenient reference temperature; higher 
powers in the •' polynomials render the ensuing 
analysis unmanageable by a desk calculating 
machine. The numerical values of the coefficients 

are chosen to obtain a reasonably good fit to 
the available mean annual temperature distribu- 
tion for the northern hemisphere. It is assumed 
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that northern and southern hemispheric distribu- 
tions coincide, but the analysis can be extended 
to apply to northern mean winter conditions, 
say, and southern mean summer conditions, or 
vice versa, by including several more Legendre- 
type terms, but in a first approach symmetry 
about the equator is assumed. To obtain a 
reasonably representative density formula, equa- 
tion 20 is used together with the pressure 
equation 

p = Po exp 

and the equation of state 

p = pRT 

where R is the gas constant, to obtain a working 
density expression in the form 

P,/Po = ao + bo(•'- «•.2) 

+ P2(cos O) { a2 + b2(•' -- «•':) } (21) 
Substituting equations 16, 17, 18, 19, 20, and 

21 into 13, 14, and 15, and eliminating pressure 
between equations 13 and 15, we obtain 

2•2h sin 0 •-• -- 2•2h ! cos 0 

I + 

+ 

O0 •• + (1 + •'----• 0-•- (1 + 

a(1 -+- i'/)•2h sin' 0 •00 po 
The parameter ! is very small (about 1/290), 
and the vertical velocity 0 is much smaller than 
a or 0; these factors enable us to neglect many 
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of the terms in (22) and retain only the main 
terms within the various brackets. We obtain, 
after integration with respect to •, 

0•.2 -•- 2R=. cos 0a 

h ( 0• 0• ) 
= g'• A •(cos 0)•a• + 5•(• • K•. dO 

• a • •s) K=. sin 0 cos 0 
X { bo + baPa(cos O)}(• -- •) + F(O) (23) 

where R•. = 9ha/K•. 
Si•larly, the zonal equation 14 becomes 

O• • k a•K,, ] O0 • 

where X = k•/•, and •, = •hz/K,. Equa- 
tions 23 and • form the basic equations of 
motion to be solved: they represent a balance 
between the Coilohs forces, the turbulent stresses, 
the nonenear inertia terms, and terms ineor- 
porat•g the effects of mefidional and vertical 
•mperature gradient. 

The bounda• conditions used are ½e simplest 
possible in form in order to reduce the weight 
of numefieM work; ½ey are 

a=v= e= o on r= 0 (25) 
and 

-0 on •'= I (26) 

A better form of prescribed conditions at the 
surface •' = 0 would be given by 

that is, Reynolds stresses very near the surface 
are proportional to squares of velocities, • being 
known empirically. However, this form compli- 
cates the solution very considerably, and, in 
a first approach, the simpler form (25) has been 
taken in obtMning a first solution of (23) and 
(24). Boundary conditions at the tropopause for 
a general circulation type of problem are not of 
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course well established, and again the simplest 
assumption has been taken, that Reynolds 
stresses are zero at the tropopause. 

4. A solution of the equations of mean motion, 
including nonlinear terms. Consideration of the 
magnitude of the various nonlinear terms in 
equation 23, using observed values, shows that 
the term involving (a)• is easily dominant, except 
in very low latitudes, and is of the same order of 
magnitude as the Coriolis term, and in equation 
24 all the nonlinear terms are much smaller than 

the Coriolis term. Consequently, to estimate the 
influence of the nonlinear terms on the form of 

solution, we retain only the term involving •. 
The parameter Rm. is nondimensional, and it is 
convenient to write • = K•u, 0 = K•v, where 
K• - g'h•/K,.. and has the dimensions of 
velocity; u and v are then nondimensional. 
Equations 23 and 24 become 

0• + 2R cos Ou q- \K,•,"] cot 0 

= --! •0 Pc(cos O){a:•r --1- b:•(r -- «•)} 

g,h 5 R sin0 cos0{bo 
+ b,.?,.(cos 0)}(r - «D + F(0) (2•) 

where R = R•,, and 

0r'- 2R.. cos ov + 0 a K,,,/T• = 0 (28) 
To obtain an estimate of the manner in which 

the effect of the nonlinear terms enters the flow, 
as the angular velocity 9 is assumed to increase 
from zero, we look for a solution of (27) and (28) 
in the form of an ascending series in the param- 
eter R; later it is found that substitution of the 
value of the earth's angular velocity for 9 
fortunately leads to reasonably quick con- 
vergence of the series solution for the meridional 
circulation over a substantial part of the atmos- 
phere. We write 

u = Uo + Ru• + R'u, + R•u• + ... (29) 

v = Vo + Rv• + R"v, + R%, +... (a0) 
and 

Substituting (29), (30), and (al) into (27) and 
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(28), and equating the coefficients of R, R'-, etc., 
we obtain the following system of equations' 

O2uo 
o• - o (3•) 

0•'" -- 2•-• cos Ovo -- •g•a"K• •-• (33) 

o• - . • •o• o• (34) 
in general 

O"u• Rz• 
of• - • •, cos 0•_• (35) 
and also 

O"vo _ 0•" -- [ • P"(cøs 0) 

•D] •m•) CO• 

0• + 2 cos OUo 

= -• K• V cot OUoU• + F• (•) 
•2• 2 
0• + 2 cos Ou• 

• --•Km•2] co• O(u• • • 2UoU. 

- ••h • ]sh0cos0{bo x g 

+ o.(co• 0)] • (•- •" + •., (3s) 
•203 
•,+ • cos Ou• = -•••/co• 00•.+ ,•o•,•) + y• (3•) 

and so on. 

The associated boundary conditions are Uo = 
v o = 0 at • = 0, since u = v = 0 independently 
of R, and similarly Ouo/O• = Ovo/O• = 0 at 
• = 1. Equation 32 gives immediately Uo = 0 
and, hence, using (37), v• = 0; similarly, u• = 0 
and v• = 0, etc. The zero value for Uo shows of 
course that at • = 0 the circulation is entirely 
meridionM. Integration of equation 36 together 
with an app•cation of the condition 

1 

fo Vo d•' = 0 
leads to the expression 

\ 16 '+' 1-•) •'" 
2• • (40) 

•en •s is plo•ed as a function of • and O, 
we find a meridionM circulation in •he form of a 
single Hadley cell, which is directed •oward •he 
sou•h in lower altitudes and •oward •he north 
a• higher altitudes. 

Substitution of •he v0 expression and •he 
empirical •empera•ure form (20), wi•h • = • 
•o simpfify •he resulting polynomials, in•o (33) 
and integration •hen leads •o 

• 5• • + 

+ b. '1•4 144 { 720 5•0 

+ 015(, ) ' •K•a K• 

This is the dominating •erm if 9 is very small 
and on cMcul•tion gives •n easterly flow at low 
latitudes and westerly elsewhere. Integration of 
(38) then yields the next •erm in the meridional 
series expansion, 

v2 4] K•. ,, d 

ß {a. X •0-"•.•s9• + •.042•" - 0.868• ø 

+ 0.•98f) + b" X •0-4(-s.208• 

+ 3.472• *-- 2.315• ø 

+ o.248r •- o.o28rø)} 

'coO( 0 



SYMPOSIUM ON TURBULENCE IN GEOPHYSICS 3127 

725•( h g ]k -- (0.1 , •'a••-•, cot 0 

'cøs• • -• + • •o + • 

- •[••/co• • • •ot • •(•o• •9 
ß [a• • • 10-•(-a.21• + •.• - 1•.0• • 

% 11.39• 1ø- 3.9• % 0.•3• •) % 2a•b• 

X lO-•(-•.2• + 2.•8• • - 4.•2•" + 2.6• •ø- 0.26• TM _ o.a• • 

• 0.11• • _ 0.01• TM) • b• • • 10-•(-- 0.46• 
+ o.86• • - 1.•4•"• o.•4• •ø • o.18• TM 

_ o.1• 1• + o.o2• • + o.o•)] 

-- •]g,h •] sin 0 cos O(bo • b•P.(cos 0)) 

( '-•+c • + • 
3 t 

+ o 

. . • 0)[ a• x 10-• cos 0 P•(cos (- 6.2• 

+ O.04r ø- 8.08r* + a.s•r • 

- o.ssr ø) + ,• x •o-•(-2.88r + 2.82r ø 
- 2.•sr* + o.o2r • + o.10r ø 

- o.•or TM + o.o•r•)] (42) 
where F•(O) is obtained by substituting (42) 
into the condition 

1 

Substituting (42) into (35), with n = 3, gives 
the next term in the series for zonal velocity, 
and the procedure has been repeated to obtain 
expressions for ua and v•. They are si•lar in 
structure to (42) but very much longer; if it is 
assumed that K•. = K. they contain a dominant 
term and tractable expressions can be obtained 
for u•, v0, and m, but if (Km./K.) is sig•fieantly 
greater than 1 the procedure becomes too 
cumbersome and breaks down. 

5. Discussion o[ numerical results. The form 
of the equations and expressions for successive 

un and v, illustrate clearly the dependence of the 
mean flow on the Reynolds stress components, 
but the choice of appropriate numerical values 
of the associated turbulence parameters Kin,, 
Kz,, and k is of course a fundamental difficulty. 
We have taken the value 106 cm ' sec -• for K•, 
since this was approximately the value sug- 
gested by Tucker [1960]. If we take the same 
value for Kin, and the associated k value from 
Tucker's values of u•v •, the meridional velocity 
components are of much smaller magnitude than 
observed values, and a calculated Hadley cell 
extending from the equator to the pole is pro- 
duced. However, since the large-scale turbulence 
in the main body of the troposphere is generated 
by the temperature gradient between equator 
and pole, it seems reasonable to suppose that 
the eddy viscosity coefficient is of very much 
greater magnitude in the direction of this gradient 
than in the zonal direction. No observational 

data are available to support this suggestion, 
but we find that a fairly realistic meridional 
cellular structure is calculated if we substitute 
into the series solution a numerical value for 

Kin, of about 109 cm ' sec -• together with the 
associated k value which produces. values of u•v • 
in rough correspondence with those given by 
Tucker. The form of the v, terms becomes 
rapidly more complex as n increases, but for- 
tunately it is only necessary to calculate v0, vz, 
and v4, since the v4 values are considerably 
smaller than the v• values except in very high 
latitudes. 

The values corresponding to • - 1• and • - 1 
are shown in Table 1. The breakdown of a 

TABLE 1. Calculated Values of Mean Annual 

Meridional Velocity 
Velocities in centimeters per second; positive 

indicates northerlies; K,• = 106 cm 2 sec-•; K,,, - 109 
cm 2 sec-•; X -- 1.21 X 1017 in cm sec øC units. 

I-=« 

Observed Caleu- Observed Caleu- 

Colatitude (Tucker) lated (Tucker) lated 

20 --25 --1 +5 +1 
30 --14 +5 --3 +4 
40 +28 +9 +11 --15 
50 +19 +8 +10 --26 
60 0 -t-7 --30 --31 
70 --35 +6 --58 --27 
80 --3 -!-3 --48 --16 
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single Hadley cell is clearly marked at about 
latitude 55 ø , and during the calculation it was 
interesting to note that if k is decreased there 
is a tendency for the circulation to degenerate 
into a single cell, whereas an increase in k moves 
to lower latitudes the calculated point of break- 
down into a second cell. This suggests, as we 
might expect, that the Reynolds stress corn- 

.. 

ponent u•v ' is a crucial factor in shaping the 
structure of the meridional cellular circulation. 

From equation 28 we see that u•, v2, ... , depend 
on (O/OO) (u'v'); this changes sign at about 45 ø 
latitude, and since it makes a major contribution 
to v (and probably u) a reversal in sign of v 
takes place (at a value of 0 that depends in our 
calculation on the value selected for k) and so 
produces a double cell system instead of a system 
that is a simple Hadley cell in the absence of u'v'. 
The K,•/Ks, value is also found to influence 
the point of cellular division. 

We have selected the terms in the resultant 

expression for v that depend on •'v' and those 
that depend on the nonlinear terms. We find 
that the contribution of these u'v' terms to the 
resultant v value is about 20 per cent at 20 ø 
latitude, 10 per cent at 40 ø, and 50 per cent at 
60ø; the contribution of nonlinear terms is about 
2 per cent at 20 ø latitude, 5 per cent at 40 ø, 
and 10 per cent at 60 ø . 

It has also been found possible to obtain 
sufficiently rapid convergence of the u series 
from latitude 10 ø to 40 ø using Kin,- Ks, - 
2 X 107 cm" sec -•, and we find calculated u 

values corresponding fairly well with observed 
values, including the change from the westerlies 
of mid-latitudes to the easterlies of low latitudes. 

Unfortunately, however, the convergence of the 
u series is very slow for the values of Ks, and k 
based on observed estimates of stresses and 

velocity gradients and the value of Kin, which 
leads to fairly realistic meridional circulation. 
The numerical evaluation using a desk calculator 
becomes quite impossible, owing to the rapidly 
increasing complexity of the successive un as n 
increases, but it is hoped to overcome this 
difficulty by obtaining the use of an electronic 
computer. 

Finally, we note that the calculated meridional 
cellular circulation is sufficiently realistic to 
consider also a solution of the thermodynamic 
as well as the dynamic equations by constructing, 
as in this paper, series representations of the 
velocity components in powers of • each 
coefficient being a series in powers of AT, the 
difference in mean temperature between equator 
and pole. 

Acknowledgments. We are indebted to T. V. 
Davies and J. S. Sawyer for helpful suggestions. 
One of us (M. B. O.) was in receipt of a DSIR 
studentship. 

REFERENCES 

Phillips, N. A., Quart. J. Roy. Meteorol. $oc., 82, 
123, 1956. 

Tucker, G. B., Quart. J. Roy. Meteorol. $oc., 85, 
209, 1959. 

Tucker, G. B., Tellus, 12, 134, 1960. 


