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Energy Transfer in an Isotropic Turbulent Flow 
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Abstract. This paper examines the dynamical consequence of the hypothesis that fourth- 
order mean values of the fluctuating velocity components are related to second-order mean 
values as they would be for a normal joint-probability distribution. The equations derived by 
Tatsumi for isotropic turbulence on the basis of this hypothesis are integrated numerically as 
an initial value problem for an inviscid fluid. The most remarkable feature revealed by the 
computation is that the energy spectrum function becomes negative during the course of time 
in certain regions of wave-number space. This situation is similar to the result obtained pre- 
viously for two-dimensional turbulence. Truncation errors that arise from finite-difference ap- 
proximations in numerical integration are examined. It is tentatively concluded that this un- 
physical negative energy is not generated by the truncation errors but is the consequence of the 
quasi-normality hypothesis. 

1. Introduction. The problem of homogene- 
ous turbulence can be stated as follows: given 
the state of the turbulence generated in a fluid 
at an initial instant, to predict the state of tur- 
bulence as a function of time. Although a con- 
siderable amount of work has been done on this 

problem, a satisfactory solution applicable to the 
major portion of the time-history of turbulence 
has not been obtained. The chief difficulty lies 
in obtaining a determinate set of dynamical 
equations. From the momentum and continuity 
equations, equations involving moments (corre- 
lation functions) of the fluctuating velocity com- 
ponents of any order can be constructed. Each 
n-order equation so obtained involves the mo- 
ments of n + i order as a direct consequence of 
the nonlineartry of the Navier-Stokes equations. 

The various methods of approximation pro- 
posed for making the infinite set of dynamical 
equations finite can be divided into two broad 
classes. In the first class, models of dynamical 
processes are postulated on physical grounds; 
examples are the theories of Kolmogoroff and 
Iteisenberg. The second class consists of schemes 
for systematic analytical approximations. 

• Based on a paper presented at the International 
Symposium on Fundamental Problems in Turbu- 
lence and Their Relation to Geophysics sponsored 
by the International Union of Geodesy and Geo- 
physics and the International Union of Theoretical 
and Applied Mechanics, held September 4-9, 1961, 
in Marseilles, France. 

So far two different approaches have been 
taken in the second class. The most straight- 
forward sequence for closing the infinite set of 
moment equations consists of ignoring moments 
of n + 1 order in equations for n-order moments 
[Deissler, 1958 and 1960]. It is possible that 
there may be a fundamental limitation to this 
scheme. Whereas we may reasonably expect the 
approximation to converge rapidly when the 
Reynolds number for the system is small, we do 
not know whether this scheme yields adequate 
approximations for interesting cases of the very 
large Reynolds number. 

Another approach is to introduce the hypothe- 
sis that the fourth-order cumulants of the ve- 

locity field are zero, that is, that fourth-order 
moments of the distribution of simultaneous ve- 

locity components are related to second-order 
moments as they would be for a normal-prob- 
ability distribution. Fourth-order moments can 
be then expressed in terms of second-order mo- 
ments, and the set of moment equations is closed. 
Proudman and Reid [1954] and Tatsumi [1957] 
applied this hypothesis to the problem of decay 
of incompressible isotropic turbulence. 

In a recent study on the mathematical struc- 
ture of isotropic turbulence in two dimensions, 
Reid [1959] and Ogura [1962, hereafter re- 
ferred to as paper A] derived a set of dynamical 
equations. These equations follow from the above 
hypothesis and are the two-dimensional counter- 
part of the equations derived by Proudman and 
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Reid [1954] and Tatsumi [1957]. Ogura then 
solved the equations numerically as an initial 
value problem. The time-history of two-dimen- 
sional turbulence so calculated displays a sub- 
stantially different behavior from that generally 
accepted for three-dimensional turbulence. The 
calculated rate of energy transfer is found to be 
greater toward the larger than toward the 
smaller scales. Perhaps the most noteworthy fea- 
ture revealed by the calculation is that the en- 
ergy spectrum eventually becomes negative for 
medium-sized eddies. It was concluded in paper 
A that this unphysical negative energy cannot 
possibly be generated by the truncation errors 
associated with the finite-difference approxima- 
tions in numerical integration but is the conse- 
quence of the quasi-normality hypothesis. 

Since this hypothesis has been used by several 
authors, the study has been extended in order to 
investigate its consequences for three-dimen- 
sional turbulence. The purpose of this paper is 
to report the results so far obtained. 

2. Design o• numerical integration. By chang- 
ing one of the independent variables from/• to 
K", the set of dynamical equations derived by 
Tatsumi [1957, equations 2.6 and 2.18] are 
transformed to 

_0 •(,,, t) + •,,,•(,, t) Ot ' 

-- •(K, 1(' 1(" t) d1(" d•' (2 1) 
K--KII 

- •' •")•(• t).•(•' t) 

+ •,•_(•, ,,', ,,")•(,,', t)•(•", t) 

q- •a(1(, •', 1(")E( g", t)E( g, t) (2.2) 

where E is the energy spectrum function, v the 
kinetic viscosity coefficient, • the wave number, 

q K 2 K tt2 

__ __ i( 4 1(I 

'• ,,2 (3• "• 
__ K 2 

•a = 16•- "• ( • -- •'• + •'• 
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and q is the symmetric quartic 

q = 2K2K' 2 q- 2•21( 

The set of (2.1) and (2.2) constitutes the fun- 
damental equations for the present study of' 
turbulence. 

In numerical integration of •his set of equa- 
tions, the infinite integration in (2.1) is neces- 
sarily truncated at a finite limit, say •. It can 
then be shown that •he total energy is still 
conserved, for an inviscid fluid, in the form 

Ot E(•, t) d1( = 0 (2.3) 
if the upper and lower limits of the integration 
with respect to K" are also truncated at •. 

For convenience of numerical analysis, dimen- 
sionless variables are introduced in the follow- 

ing form: 

t = r(/XO r = O, 1, 2, ... 

,, = z:(•x,,) •' = •(•x•) ,,"= i(•x•) 

•* = I(/X,O i, j, k = O, 1, 2, ... , 1 

• = •o•(•, •-) 
ß = {of(•, j, i, •) (2.4) 

where Eo and •o are constants. At and A• denote 
the finite-difference increments for time and 

wave number, respectively. Equations 2.1 •d 
2.2 then take the following dimensionless finite- 
difference form: 

•r•*•(•) • •- • + •r*•(•) 

. •c,+ , j, i, r) di dj (2.4) 

. 1+•(•+ +•) 

[ ]_1 1 +• 1+•(•+ +•) 

+ ½a•(*'(i)• <*) (k)] (2.•) 
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where 

Re = -a 

= 0-1 

= -' 
and the dimensionless form of v•, v2, and v• are 
obtained simply by replacing K, K', and •" by 
k, j, and i, respectively. In these equations, a 
typical term hke l½('•(k) represents a value of 
/• at t = r(Ar) and • = k(A•). In deriving (2.4) 
and (2.5), a viscous term hke •,E in (2.1) has 
been replaced by •,(E ('+•) q- E(,))/2. This 
finite-difference form reduces the truncation 

error and also permits us to use a larger At, 
without violating computational stabihty, than 
is permitted using a simple form like 
(see Appendix). 

To integrate (2.4) and (2.5) it is necessary to 
assume initial conditions for /• and •. As an 
initial spectral distribution we take the following 
form: 

= exp -- (2.6) 3%/• ko 
where k0 = •0/AK and K0 is a constant. The 
form of (2.6) has also been used by Proudman 
and Reid [19541. 

The initial distribution of • remains to be 
specified. In view of the fact that no experimental 
information is available, we shall assume that 
the initial energy transfer between eddies of 
different sizes is zero; that is, 

•(•/"'(k, •, i) : 0 (2.7) 
The choice of this condition is made on the 

basis of simplicity. 
3. Result of numerical integration. Two differ- 

ent integrations of (2.4) and (2.5) have been 
completed for an inviscid fluid (R,-4 •o) on an 
IBM 709 computer, starting from the identical 
initial conditions (2.6) and (2.7). The only 
difference between the two runs is that I, the 
upper limit of the integration, is 16 in the first 
run and 32 in the second. The following values 
are assigned to the dimensionless parameters: 

ko = 4 0-• = 0.00625 0-• = 0.025 

Figures 1 and 2 show the dimensionless energy 
spectrum function P plotted against the dimen-' 
sionless wave number k for various values of 
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Fig. 1. Variation of energy spectrum with time. 
1----16. 

time. Figure 3 shows the energy transfer functior• 
as a function of time and wave number. The 

transfer function gives the net energy transfer 
into a wave-number band from all other wave 

numbers. We observe in Figures I to 3 that, ia 
marked contrast with the case for turbulence in 

two dimensions, the energy is transferred per- 
sistently from larger to smaller eddies, except 
for the very small 'back transfer' of energy to 
the region of very small wave numbers. 

The most noteworthy feature of the computa- 
tion is that negative energy appears again dur- 
ing the course of time in the region of energy- 
containing eddies. In paper A, the truncation 
errors induced by the finite-difference approxi- 
mations have been examined in detail. It has 
been concluded that the truncation error that 

arises from replacing derivatives and integra- 
tions by finite differences and summations re- 
spectively is very small for the At and AK used 
in that calculation. The dynamical equations for 
turbulence in three dimensions are similar in 
mathematical form to those in two dimensions. 

The space increment used in this paper is the 
same as that in paper A. Consequently we may 
reasonably assume that the generation of nega- 
tive energy is not caused by this type of trunca- 
tion error. This may also be justified by the fact 
that the total energy computed from the numeri- 
cal solutions remains approximately constant, as 
is required in equation 2.3 (see Table 1). Per- 
haps the most serious error is that induced by 
truncating the domain of integration at the 
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Fig. 2. The same as Figure 1 except I -- 32. 

finite wave number I. It is serious because, as 
we observe in Figures I to 3, this truncating 
process is equivalent to preventing energy trans- 
fer past the limiting wave number. The piling-up 
of energy appearing near and at the end of 
wave-number space is apparently caused by this 
effect. The error from this source is greater in 
three than in two dimensions, because only a 
small fraction of energy is transferred to the 
region of large wave numbers in two dimensions. 
It was found in paper A that I -- 32 is large 
enough to make the error from this source suffi- 
ciently small; in three dimensions, it appar- 
ently is not. 

This situation may be demonstrated further 
by examining the production of vorticity, be- 
cause the total vorticity is more sensitive than 

the total energy to the error involved in the 
region of large wave numbers. It was pointed 
out by Proudman and Reid [1954] that, when 
v -- 0, (2.1) and (2.2) permit the following 
simple equation (as far as an inviscid fluid is 
concerned, the set of equations derived by 
Tatsumi is identical with the result given by 
Proudman and Reid): 

d-• •E(•) d• = • •E(•) d• (3.1) 
The equation for the mean square value of 
one component of vorticity may then be written 
in dimensionless form 

d2• 2 
dt •. - •(&•')• (3.2) 
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Fig. 3. Variation of energy transfer function with time. 



SYMPOSIUM ON TURBULENCE IN GEOPHYSICS 

TABLE 1. Total Energy as a Function of Time in 
Percentage of Its Initial Value 

Time Total Energy 

0 100.0000 
10 99.9994 
20 99. 9980 
30 99.9980 
40 100.0029 

where 

and 

&2 2 fo • = • •:(•) • 

= 
The • and k in (3.2) are dimensionless, continu- 
ous variables, scaled by At and AK, respectively. 
The solution of (3.2) is the Weierstrassian el- 
liptic function 

5f = 2•/S5•o2•(t'; 0, 1) (3.3) 

where 50 • is a constant corresponding to the 
i•tial value of •, and, with • suitable choice of 
the origin of time, 

tt •1/3/1 - 2•1/2 

For the initial distribution of energy spectrum 
(2.6), •o • is given by 

Consequently 

t'= 

= 0.0330 (s.4) 

In the physical problem, only one re•l period of 
the doubly periodic el•ptic function is relewnt, 
n•mely, 0 • t' • 2T, where T = 1.53. The 
relation 3.4 indicates then that T = 1.53 cor- 

responds roughly to • = 46. 
Figure 4 compares 5•/•0 • cMcul•ted from the 

exact solution (3.3) with those calculated from 
the numerical solution for the c•se of I = 32. 

We observe that the numerically c•lcul•ted 
result is initially in good •greement with the 
exact solution, but •s time increases • sub- 
stuntiM fraction of energy re•ches the end of 
w•ve-number sp•ce •nd thereby the difference 
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between the two results becomes large. It should 
be emphasized, however, that the variation of 
the spectrum function with time in the middle 
range of space appears to be little influenced by 
the variation taking place at and near the end 
of wave-number space. This can be seen in 
Figure 5, which compares the variation of 
spectrum with time at k - 7, where the first 
negative energy appears, for the different I. 
We observe that the difference between the two 

cases is surprisingly small compared with the 
total change that /•'(k = 7) undergoes during 
the whole period of time. 

4. Concluding remarks. As was described in 
paper A, the hypothesis of zero-fourth-order 
cumulants has been used by several authors in 
their investigations of the mathematical struc- 
ture of turbulence. Some experimental results 
have also been reported that seemed to support 
the validity of this hypothesis. But also some 
work has cast doubt on the applicability of this 
hypothesis to turbulence problems. As was men- 
tioned in section 3, Proudman and Reid [1954] 
have been able to integrate the equation for the 
production of vorticity exactly and thereby de- 
duce the value of the skewness factor. The re- 

sulting skewness factor takes the values which, 
according to inequalities derived by Betchoy 
[1956], are incompatible with a positive-definite 
distribution having zero-fourth-order cumulants. 

Kraichnan [1961] has demonstrated analyti- 
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Fig. 4. Comparison of production of vorticity 
calculated from the exact solution (eo]id line) and 
the numerical solution (d•shed line). 
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Fig. 5. Comparison of variation of energy spec- 
trum with time at k -- 7 for I -- 16 and I -- 32. 

cally that this hypothesis leads to negative- 
definite power spectrum when it is applied to 
the 'convection' of a scalar field by a prescribed 
random velocity field. He has also suggested the 
possibility of having a nonpositive spectrum in 
some regions of wave-number space when it is 
applied to a vector field. 

The results of the calculations reported in this 
paper for a three-dimensional velocity field show 
a generation of negative energy, similar to that 
reported in paper A. As described in section 3, 
the numerical error induced by truncating the 
domain of integration at a finite wave number 
is more serious for turbulence in three dimen- 
sions than for turbulence in two dimensions. 

Consequently, the conclusion that the generation 
of negative energy is most likely the consequence 
of the hypothesis so applied should be regarded 
as tentative. A more definite conclusion may be 
reached when the viscous forces are incorpo- 
rated with the inertia forces in the calculation, 
so that no appreciable amount of energy appears 
at the end of truncated wave-number space. This 
calculation is under way, and results will be re- 
ported soon. 

APPENDIX 

The computational stability of the finite-dif- 
ference equations (2.4) and (2.5) is difficult to 
investigate because the equations are nonlinear. 
As for the effect of viscous terms on the sta- 

bility conditions, considerable information can 

be obtained by examining the computational 
stability of simplified versions of the basic equa- 
tions. The equations we treat for this purpose 
are 

OE/Ot- a•b -- •,E (A.1) 

o/ot = - 

where a, b, and v are constants (v _• 0, ab < 0). 
We write (A.1) and (A.2) in finite-difference 

form: 

E a(z('+l) -•- (7+1) __ E(r) __-- a(At)•(,+,/2) 
(A.3) 

•//(r+l/2) •(r--1/2) b(•t)E(•) 
•(•(•+1/2) • •(•- 1/2))J 

where a -- r(At)/2 and dimensionless time; is 
taken as an integer. 

Equations A.3 may be written in matrix fo•' 

where 

ab(At)2• a(At) (1-- •-(bO = lq-o- (lq- 1 1 
b(At) i -- 
1-•-a 1-•-a 

is what we call an amplification matrix. The 
finite difference equations A.3 are then com- 
putationally stable if the absolute values of the 
eigenvalues of 0 are equal to or less than 1 
[Richtmyer, 1957]. 

The eigenvalues of 0 are roots of the quadratic 
equation 

(1 •- a)%2 _ [2(1 -- 

+ (1 0 

where ,•2 = _ab(At)2 > O. 
First, we can readily show that, when • = 0 

(that is, a = 0), the stability condition (Ico I _• 1) 
is met if .•2 •_ 4. When a •: 0, it is found after 
some manipulation that the condition is met if 

,y•. _.[_ ,.y[,y2 _.[_ 4(•2 __ 1)]1/2 __• 4(1 q- o') 

It is obvious that this condition further reduces 
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to the simple one 
2 

This result indicates that, as far as •- satisfies 
(A.4), the finite-difference equations A.3 are 
always stable irrespective of values of •. This 
would not follow if the viscous terms yE and 
are evaluated as •E(• and 

Note added in proof. The calculation has 
been completed for several values of the Reyn- 
olds number. The generation of negative energy 
is also observed in those cases where the Reyn- 
olds number is high and yet no appreciable 
amount of energy appears at the end of the 
truncated wave-number space. 
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