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Abstract. The Navier-Stokes equations for incompressible flow in their Lagrangian form 
are taken as a starting point. A perturbation technique is then used to obtain first- and second- 
order sets of equations, and the general procedure for solving the equations to any order is 
given. The first-order equations yield interesting two- and three-dimensional motions that have 
some of the properties of 'stirring,' 'eddies,' and 'turbulence'; it is suggested that various prob- 
lems in turbulent motion might possibly be re-examined by means of these equations. 

Introduction. The Navier-Stokes equations 
in their Eulerian form have proved to be so in- 
tractable that nearly all hope of finding a mean- 
ingful solution to describe even one possible 
fluid motion to within its finest small-scale struc- 
ture has been abandoned. Present-day thinking 
is along the line of finding meaningful averages 
over an ensemble of possible solutions so as to 
extract the part of the fluid motion that is be- 
lieved to be repeatable from one observation to 
the next. 

However, the Navier-Stokes equations can also 
be written in a Lagrangian form, as was pointed 
out by Gerber [1949] and discussed by Corrsin 
[1961b]. In Lagrangian form, these equations, 
even for incompressible flow, are complicated in 
appearance. The complexity arises in ways that 
are quite different from the source of the com- 
plexity in the Eulerian form, so that, when a 
fluid parcel is followed, the nonlinear field ac- 
celeration terms of the Eulerian form vanish. 

This one feature of the perturbation expansion 
of the Lagrangian equations makes it possible to 
obtain motions that appear to have features 
much more like turbulence than those possible 
from studies of the linearized Eulerian equa- 
tions. 

The present status of knowledge about turbu- 

x Based on a paper presented at the International 
Symposium on Fundamental Problems in Turbu- 
lence and Their Relation to Geophysics sponsored 
by the International Union of Geodesy and Geo- 
physics and the International Union of Theoreti- 
cal and Applied Mechanics, held September 4-9, 
1961, in Marseilles, France. 

lent flow has been described by Corrsin [1959, 
1961a, b]. Stewart [1959] has given a descrip- 
tion of the natural occurrence of turbulence ap- 
plicable to geophysical problems and put forth 
the suggestion that 'a fluid is said to be turbu- 
lent if each component of the vorticity is dis- 
tributed irregularly and aperiodically in time 
and space, if the flow is characterized by a trans- 
fer of energy from larger to smaller scales of 
motion, and if the mean separation of neighbor- 
ing fluid particles tends to increase with time.' 

The practical and the theoretical solutions to 
the problem of turbulence are still far apart. As 
summarized by Kraichnan [1961], the theoreti- 
cal solutions serve only as a check against one 
another. The practical solutions still seem to 
have many deficiencies. 

Similar to the problems of turbulence are the 
problems of stirring, mixing, and dispersion 
[Eckart, 1948; Corrsin, 1961a]. Here Lagran- 
gian solutions seem advantageous in explaining 
how very strong small-scale gradients can be 
produced by stirring so as to augment many 
fold the effect of mixing and molecular disper- 
sion. Similarly, if a particle is to be followed, 
Lagrangian equations are the natural way to 
seek knowledge of its motion. 

In meteorology and oceanography, 'eddy' vis- 
cosity, 'eddy' conduction, 'eddy diffusion, mix- 
ing length,' and 'austausch' coefficients have 
replaced the more fundamental concepts of 
molecular viscosity, molecular diffusion, and mo- 
lecular conduction, solely because the original 
equations in terms of the latter quantities have 
simply not yielded solutions capable of explain- 
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ing the fluxes that are observed to occur. Yet, in 
the true physical sense, the equations involving 
the molecular concepts are more meaningful than 
those involving 'eddy' concepts. 

Fine-structure gradients of velocity and tem- 
perature are known to be large, and, if solutions 
could be found for the 'molecular' equations that 
could explain the 'gross' features as observed, 
our understanding of these features would be 
greatly increased. The 'eddies' would be a part 
of the solution instead of something averaged 
out of the solution by an averaging process that 
unfortunately changes the nature of the 'eddies' 
and the mean flow as its time and spatial scale 
is changed. 

If meaningful solutions to the 'molecular' 
equations could be found, it might even be pos- 
sible to fill in some of the gaps in the classical 
literature on turbulence. For example, Reynolds' 
classical experiment with filaments of dye in a 
pipe describes but does •ot expl•n the onset of 
turbulent flow at a certain Reynolds number. 
Also, much of the present work on turbulence is 
more of an attempt to describe it than to ex- 
plain it. 

Solutions to the Lagrangian equations are diffi- 
cult both to interpret and to verify, as verifica- 
tion is usually possible only by means of mea- 
surements that are more suitably made with 
reference to a fixed point of observation. In prin- 
ciple, however, a solution in Lagrangian form 
can be inverted to obtain an approximation to 
a solution in Eulerian form. Such a solution need 

not be a solution of the Eulerian equations to 
any particular order. In fact, a linear solution 
in Lagrangian form, for at least one nonviscous 
problem that has been studied, provided a rea- 
sonably exact facsimile to a third-order solution 
of the same problem in Eulerian form. 

The problem o/linearization. If the Navier- 
Stokes equations in their Eulerian form are 
linearized, the result, in the absence of field ac- 
celerations, is a set of equations from which it 
appears that only trivial solutions quite unlike 
turbulent flow can be obtained. On the contrary, 
if the equations are transformed to their Lagran- 
gian form, the linear and second-order equations 
appear to preserve certain realistic features of 
turbulent flow. In the Lagrangian form, the ac- 
celeration following a particle is preserved in the 
linear equations. A linearization of the Lagran- 
gian equations in the study of gravity waves, for 

example, has yielded much more realistic waves 
than the linearized Eulerian equations [Miche, 
1944; Pierson, 1961]. 

The Lagrangian equations in their nonviscous 
form have not been studied as extensively as the 
Eulerian equations. An exception is a paper by 
Eckart [1960], in which many important prop- 
erties of these equations were established. Un- 
published work of Eckart suggests that the ap- 
plication of classical perturbation procedures 
may yield interesting results when applied to 
the Lagrangian equations. 

Certain points raised by Corrsin [1961a] are 
also of interest here. Although the complete 
equations are 'even more severely nonlinear' 
than the Eulerian equations, the perturbation 
analysis appears to yield a system of linear equa- 
tions such that an approximate solution of the 
linear equations may be a good start toward a 
correct solution of a problem in fluid motion, 
and, as was pointed out above, the nonlinearities 
appear in a different way so as to preserve cer- 
tain desirable features even in the linear equa- 
tions. 

The equation o/continuity. The equation of 
continuity for incompressible flow in Lagrangian 
form is given by Lamb [1932] as 

O(x, y, z) 
= I (1) 

In this work, the tags for the fluid particles will 
be identified with their coordinates either at 

zero time or in the undisturbed position. This 
greatly simplifies the perturbation form of the 
equation of continuity. (The a, b, and c used in 
Lamb will be replaced by •, fi, and S through- 
out.) 

The other possible form of the equation of 
continuity, namely, that 

O(xo, yo, O(x, y, 

introduces a complication due to the fact that 
the tags a, •, and S no longer refer to the initial 
coordinates of the fluid parcels. 

Derivation o/ the Lagrangian equation. For 
incompressible flow, the Navier-Stokes equations 
are given by equations 3, where subscripts de- 
note partial differentiation [Lamb, 1932]. 
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x,, -- (•/p)V2u -- --p,/p (3) 

y,, - (•,/•,) • = -p,/•, 

z,, + g- (•ip)V2w- --p•/p 

In equations 3, x•, = u, • uu, • vu, • wu, 
and • u = u,, • u•, • u,,. If the first equation, 
following Lamb [1932], is multipSed by x•, the 
second by y•, and the third by z•, and if then 
the three equations are added, the result is the 
first of three hybrid equations that can be 
obtained. Note that p,x• • p•y• • p,z• is 
•ual to p•. 

• •U • Yt V y• •t t -- -- • Xa t 

( ) • z• • g-- ••w z• -- (4) 

Two similar equations that involve x•, y•, and 
z•, and x•, y•, and z• can also be obtained. 
From equation 1, the determinant of these 
equations is i if the terms in parentheses are 
solved for. Thus the equations for x•, y•, and 
z• are given by 

10(p, y,z) 
• o(• • •) + - v•u (•) 
10(x, p, z) • • Ytt = ---- -- 
• o(•, •, •) 

_• O(x, y, p) 
zt, • g = p O(a, •, •) • - •w 
The only remaining di•culty is expressing 

the • operator in Lagrangian form. Following 
Gerber [1949] and Corrsin [1961b], we can write 
• u in Lagr•gian form as in equation 6. 

, y, z, o , y,z 
o(•, •, •) 

o x, ,z + 
o(•, •, •) 

+ o(•, •, •) 
Similar expressions would result for • v and 
•aW, 

The first- and second-order perturbagon equa- 

tions. The full nonlinear form of these equations 
in Lagrangian form appears even more formidable 
than the original Eulerian form. Assume a 
perturbation aboutx = a, y = •, z = $, and 
p = po -- gpfi of the form 

x = a + ex• + e•x• + e•x• + .-- (7) 

y = •3 + ey, + e•y• + e•y• + ..- 

z = ,• + •z, + ½•za + ½aza q- ... 

P = Po -- gp • -]- ep• -]- e2pa -]- eSps -]- ... 

In (7), e can be considered to be an ordering 
parameter that can be set equal to i in expressing 
a final solution. When (7) is substituted into 
all appropriate equations above and when terms 
in equal powers of e are collected and set equal 
to each other, the zero-order terms balance out 
exactly. The first-order terms are given by equa- 
tions 8, where •L • x•t = xn•,•, q- xn • q- x•t • •. 

--V•x•,=0 (s) 
p p 

y• t t q- gz• q- p• • • --•Ly•t = 0 

z•tt q- gz• q- p• g :• 

x•,, q- y• q- z•a = 0 

Just as in many perturbation schemes, a 
solution to (8) can be used to obtain the right- 
hand side of the second-order equations, and the 
second-order solution can also in principle be 
found. The second-order equations are given 
either by equations 9 or by equations 10. 

Pl Xl • xat, q- p• •' q- gza•, -- g- •z,:•x:•, -- •' (9) 

+ p•y•, • p•z•, g(z•,,y•- y•,,,z•) 

21.t (x•,x•t•,•, q- y•x•t• q- z•ax•taa) 

2• ((Ylc• + Xl•)Xlt•CZ + (Zlcz + Xl•)Xltcz$ 

+ (z• + y•)x•,•) - e (x•,•v2 x• 
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Y2,, • P2• _• gz2• -- - Vz, y2t - 
p p 

_[_ p,6y,6 _[_ pl•Z• g(Xlf•Z•,• -- X•,•Z•[•) 
p p 

2/• (X•o•Ylto• • y•y• -[- zl•y•t•) 
P 

2• ((Yl o• + Xl•) Ylt c• + (Zl o• + Xl$) ,l]l te•$ 
p 

2 

-[- (z• -]- y•)Y•t•) -- •- (y•t,•VL x• 
P 

2 

+ y•tf•VL2Yl + y•t•V• z•) 

z•tt -[- p• -[- gz• -- •- • z, z•t -- 
P P 
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p•,•x• -[- y•(z•) -[- y•t,•(y•,• -[- x•) 

P -[- (x•,•(z• • x•) • y•(y• • z•)) 
2 2 2 

-- Y•t• x• -- y•t• y• -- y•t•z 

Z2tt • gz• • p• • -- •L Z2t 
p p 

• -(x•x• • y•y• • z•t•z•) 

+ • [(x•V• - x• • y•z y• 
P 

• z•) - •(z•,•(x•) + z•(y•k 

+ z•(z•3 + z•(y• + 

+ z•(z• + x•) + z•(y• + 
p•ax• 

p - z•, • • • • z•] • • x• - z•z y• - z• 

x• • y• • z• • x•y• • x•z• 

• y•zl• - x•zx• - y•z•- x•y• • 0 
Equations 9 can be transformed to equations 

10 by means of solving for the pressure in equa- 
tions 8. Except for •e correction of some mis- 
takes in algebra, equations 10 are the same as 
those obtained by a •fferent derivation of the 
Navier-Stokes equations in Lagrangian form as 
given in an earlier version of this paper. 

Equations 9 and 10 are linear, and their solu- 
tion is possible on the basis of the standard pro- 
cedures of linear theories for the solution of 
p•rtial differential equations. The right-hand 

(10) side of each equation is, of course, • known 
function of a, •, 3, and t, once an appropriate 
solution of equations 8 has been found. More- 
over, the perturbation procedure can, in prin- 
ciple, be carried out to any desired order, and 
the system of equations to be solved is always 
closed. 

Convergence problems. If the perturbation 
scheme outlined above were carried out to a 

great many terms, either the solution so ob- 
tained would converge more and more closely to 
an exact solution to the original nonlinear equa- 
tions or it would, in a sense, blow up with • 
suggestion that perhaps either the original linear 
solution was unrealistic or the perturbation ex- 
pansion was incorrect. There is no a priori rea- 
son, however, to e•ect that the second-order 
correction will be small for a reasonably strong 
flow. The series e•ansion of e • is valid for •ll 
x, and for x -- 2 the second-order term is as im- 

• P•Yl• .• p•Zl• g(x•,•y•- x•y•,•) 
P P 

•' ((y• + x•)z• + (z• + x•)z• 
p 

+ (Zl• + Yl$)Zlt•$) -- •___ (Zlto•VL 21 
p 

' •V.L Zl) 

(plus the equation of continuity as in 10). 

2 x•, q- gz,•,• -st- P•'• • •z, x• 
p P 

- --(x•tx,,• -[- y•y• • z•z•) 

+ • [(x• ' - • x• + y•• y•, 
P 

+ z•V• ZlO - •(x•(x•) + 

+ x•(z•) + x•(y• • Xl•) 

+ x•(z• + x•) + x•(y• + z•)) 

-- x•• x• -- x•t• y• -- x•• z•] 

Y•tt • gz• • p• • • • 
P P 

• --(x•,x• • y•t•x• • z•t,z•) 
2 2 2 

+ • [(x•V• + y•V• y•, + z•V ,) -- L Z• 
p 

- 2(y•taa(Xla) • y•,•(Y•) 
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portant as the first-order term. Similarly, the 
second-order correction may be large in such 
an analysis, and the third or fourth may then 
turn out to be small. 

Three solutions to the linearized equations. 
Equations 8 appear to be rich enough to yield 
rather interesting solutions for various kinds of 
flow subject to the rather strange way in which 
the equation of continuity fails to be satisfied 
because of the way that the equations have been 
linearized. We can imagine that solutions to 
these equations might provide an understand- 
ing of many problems such as the eddying struc- 
ture of smoke from a smoke stack and the 
spreading of a patch of dye. Three solutions to 
this system that represent the spreading of a 
patch of dye in two-dimensional flow, some 
strange form of decoupled surface gravity wave, 
and decaying spattally homogeneous flow that 
satisfies two of the requirements set forth by 
Stewart for turbulence have been found; they 
will be derived and discussed below. 

.4 patch o[ dye. Under the assumptions that 
there is no vertical motion, that the motion is 
the same for all particles with the same 8, and 
that the motion decays with time, equations 8 
can be written as (11) 

p 

Subject to the conditions that x -- a, y -- fi 
at t = 0, and that x, = u(x, y) = u(a, fi) and 
y, = v(a, fi) at t = 0, the solution is given by 
equations 12, where V represents a slow drift in 
the positive x direction. (Note that a low-wave- 
number term could accomplish the same effect 
for any desired area in the x, y plane.) 
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At t = 0, u = x,[,_o and v = y,[,•o are given by 
•I,.o = x, = V 

-]- • • a•qmq cos (lpa n t- mqfl) (13) 
•q 

+ • • 5•m• •n (•. + m•Z) 

v/,•o = y, 

= -• • • (•o• (• + m•) 

- • • a••n (• + 
pq 

and, since x -- a and y -- fi, the initial condi- 
tions u -- u(x, y, 0), v -- v(x, y, 0) can be 
satisfied either in terms of a Fourier integral for 
an infinite domain or in terms of a Fourier series 
for a rectangular domain--or in terms of a two- 
variable stationary random process in an infinite 
domain. Whatever form of solution is chosen 
there will be a spectrum of wave numbers 
= If + m•' such that the high-wave-number 
velocities wili die out most rapi•y. 

At t -- 0, suppose that the fluid particles 
bounded by the square' x -- a -- 0, a • y -- 
• 1;x--a-- 1,0• y--fi • 1;0 • x-- 
a• 1, y--•--0; and0 • x--a • 1, y-- 
= 1 are dyed black. The motion of this dye 
patch can then be traced as time increases. For 
example, the edge of the square given by a - 0, 
0 • fi • 1 art- 0 is given at time t• by 

( 1 -- e xp [ -- (t//p) (1. 2 --• mq•) g, ]) ß 

(u/p)(tf + m;•) 
ß sin (mq•) 

(•4) 

x = • n t- Vt n t- • • a•rn•(1 -- exp [--(tz/p)(/.2 -+- m•2)t]) 
•, (•/•)(• + m?) cos (l•c• + m•) 

(12) 

• • b•l•(1 -- exp [--(tz/p)(/• • -]- m•2)t]) p• (tz/p) (l• •' q- m• •') s in ( lpc• -]- m•B) 
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y- •- • •a•l• 

(1- exp [--(t•/p)(/p2 -+ - mq•')t•]) 
(g/p) (l• q- m 

ß cos (m•/•) 

(1 -- cxp [--(t•/p)(l,•'+ rnq2)t,]) 
ß 

ß sin (m•) 

as /• is varied from 0 to 1, since the two equa- 
tions are the parametric representation of a 
curve y = y(x) in the x,y planeß 

Some trial solutions have been constructed 

for (14), and it appears possible to represent 
deformations almost as complex as those given 
by Welander [1955]. For small times the re- 
sults show that the edges of the square are 
rippled by many high-wave-number irregulari- 
ties. As time increases, the contributions from 
wave numbers corresponding to wavelengths 
the length of the sides of the square and 
longer appear, and the square can become 
highly deformed. 

Although, by Stewart's definition, this mo- 
tion is not turbulence, it does represent stir- 
ring. The perimeter of the dye patch, which is 
4 units long at t ---- 0, increases manyfold as 
time increases. The area into which the dye 
could spread by molecular diffusion also in- 
creases manyfold as time increases. 

However, this solution (and the solutions to 
follow) is not completely realistic, as the equa- 
tion of continuity has been linearized. Two dif- 
ferent fluid particles, •1,]•1 and a•,•, can be at 
the same point at the same time, so that at some 
time, tl, later 

x = x(... t.) = 
and 
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in hydrodynamics considers this equation one 
not to be trifled with. Nevertheless, such solu- 
tions may preserve certain other features of the 
fluid motion of greater importance. 

It does not seem that any great physical 
•gnificance should be placed upon this feature 
of the solution. Miche [1944], in studies of 
gravity waves by means of similar procedures, 
has evaluated the continuity equation to one 
order higher than the solution obtainedß The 
result is some time-varying terms at the next 
higher order that serve as a way to judge how 
well the solution satisfies the equation of con- 
tinuity. A variation of ñ0.10 seemed tolerable 
in the results of Miche. 

Three-dimensional motions near a •ree surface. 
Consider solutions to equations 8 of the form 
given by (15), where the eigenvalues, X, are to 
be found and A, B, C, and D can be complex. 

Z•---- AeX*ei(tø•+m•-•øt) (15) 

X 1 • BeX*½ 

Yl • •eX•ei(løt+ml•-oøt) 

p•/p- DeX*ei(t•+m6-o,t) 

These equations yield 

(--• + (i•/•)(X •-- •))• (•6) 

q- gila q-ilD = 0 

+ - 

q- gimA q-imD = 0 

+ + - + xz) = 0 

ilB q- imC q- X A = 0 

where k -ø = /• + m •. 
The determinant of the system of linear 

homogeneous equations must vanish for solu- 
tions to exist, and this determinant yields equa- 
tion 17 for the eigenvalues. 

y = = 

This, of course, is physically impossible. Second- 
order corrections obtained by substituting (12) 
into (10) and solving (10) might provide even 
more realistic results. 

The consequences of the failure to satisfy the 
equation of continuity exactly in such a system 
are diflqeult to comment upon since most work 

X4-Jr-(--2k 2-[- iP---•-w)k2(17) 

The values of X • become 

= k" -- (ipw/2u) • •--p•2u2(18) 
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k 2--- k 2 (19) 

k • = k 2 -- ipw/• 
The four eigenvalues are therefore given by 

= • (•0) 

The pressure at the free surface, 8 = 0, can 
be zero if A2 = 0 and ,o • = gk, which is the 
condition for gravity waves, or it can be zero if 

If this value of A• is taken, if A• is chosen 
real, and if m is set equal to zero so that 1 = k, 
the real form of the solution is given by 

where 

0: [1 q-(p2co2/•2k4)]l/2 
If a semi-infinite fluid with a free surface is 

now studied subject to the conditions that x, 
y, and z approach zero as 3 approaches --oo, 
the eigenvalue X -- k yields 

E k• x, = A, --e sin(ka-- cot) (26) 

--r,(5-- 1)e kr' 
-+- r2(5-- 1)e kr• 

y•=0 

z• = A•Ie •a 

asin(--kr2 • + ka -- co t) 

c os ( -- kr• S q- ka -- co t) 1 

cos - 

A = Ax (21) 

B = ilA•/k 

C = imA•/k 

= 
For the eigenvalue A -- k(r• -- ira), where r, 

= ((1 q- •)/2) TM and r•- ((• -- 1)/2) '/', the 
result is 

.4 = & 

ilB •- imC = --k(r, -- ir•)A• 

D - --gA• 

and, subject to the condition that the disturb- 
ance is oriented in the same direction of propa- 
gation as that of the previous solution, the ad- 
ditional condition that B/l: C/m yields 

cos (--kr• • q- ka -- cot) 
Pl 

A1 -- g e •a cos (ka -- cot) 

kr•3 
-- -- g e cos (--kr2 • • ka -- cot) 

A second interesting solution is found by 
finding the solution similar to (26) except that 
l = --k and adding it to (26). The result is 
a cellular pattern given by equation 27 along 
with the appropriate pressure equation. 

I_e •a x• = 2A• cos cot 

r• 1 e •r• -- -- cos (kr• • q- cot) 

(27) 

A: A• 

B - (il/k)(r• -- ir•) A• 

C - (im/k) (r, -- ir2) A• 

D - --gA• 

The pressure is given by 

(23) -- sin (kra S q- cot) + ra 1 e 
2A• e • = cos cot q- -- 1 e •'• 

ß cos (kr2 • q- co t) 1 cos ka 

sin ka 

-: _ g A•e•e i(t 
p 

a+m•--wt) 

- A k(r•--ir•)3ei(l'•+m[•-•t) g •e 

(24) 
The solutions given by (26) and (27) are 

rather difficult to understand in their Lagrang- 
Jan form. Three types of motion seem to be of 
interest. The first type occurs when • -- gk. 
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Equation 26 then reduces to the form for gravity 
wave motion in Lagrangian form, and, in par- 
ticular, the Gerstner wave is a result. The terms 
involving (•/p)VL • vanish identically. Equa- 
tion 27 is the corresponding standing-wave 
solution. 

If, for the second type of solution, o? is ap- 
proximately equal to gk, we can write 

p2oo2 _p?• ,.• 6 X 10 ø 
so that 

r•k ---• r2k •_ 35k TM (29) 
As k varies from I to 0.0001, and the wave- 

length correspondingly varies from 6.28 cm to 
628 meters, r•k varies from 35 to 3.5. 

If •o • -- 1.1gk, so that the frequency is not 
quite appropriate to a gravity wave motion, 
r•[(•o•/gk)--l] is approximately equal to 3.5/k 8/' 
and ranges from 3.5 to 3500 as k varies from 1 
to 0.0001. 

The vertical motion in (26) for • = 1.1gk 
is only slightly increased. The increase dies out 
rapidly with depth within a fraction of a cen- 
timeter although it oscillates in direction rap- 
idly with depth. The horizontal motion at the 
surface is greatly increased. It also dies out 
rapidly with depth and oscillates in direction 
with depth. The very strong shear with depth 
and the strong velocities that result would 
probably make the resulting motions unstable. 
Thus what might be called decoupled gravity 
waves are probably not frequent in nature. 

The third type of solution is probably the 
most interesting. There is no reason in (26) 
and (27) why • has to be anywhere near the 
value gk. If, for example, •' is set equal to 
gk 10-', so that the periods of the resulting mo- 
tion will be 100 times longer than the corre- 
sponding gravity wave periods for correspond- 
ing wavelengths, we can write 

O-- •k 41 -- k • (30) 
and 

r•k __--• r•k ---• 3.5k TM (31) 
As k varies from 1 to 0.001, r•k varies from 3.5 
to 0.35 and r• varies from 3.5 to 3500. The term 
,o•/gk is negligible compared with 1. 
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Thus for k equal to 1, for example, the new 
terms contribute motions about 5 times that of 
the wavelike term in the horizontal and com- 

parable to the wavelike term in the vertical. 
The vertical motion at the surface is very small, 
essentially zero. The horizontal scale of the mo- 
tion is about 6.28 cm. The vertical scale is a 

combination of scales of 6.28 cm and 1.80 cm. 

The properties of equations 26 and 27 have 
not yet been analyzed fully, but the author is 
of the opinion that equation 27 in particular 
looks very much like what an 'eddy' ought to 
look like under these conditions and that a pro- 
per superposition of solutions in the form of 
(26) carried out to second order might give 
some understanding of how heat and dyes can 
be spread so rapidly in the upper layers of the 
ocean compared with what would be computed 
from laminar solutions of the EuIerian form of 

the equations. 
Decaying random motions. Another solution 

to the linear equations is given by equations 32. 

x = a (32) 

+ • • [1 -- exp [--(g/p)(m• • + n,a)t]] • • (g/p)( m•a + n• 2) 

ß [A•, cos (m•B + n• a) 

+ B•, sin (m• + • •)] 

y=B 

+ • • [1 -- exp [--(u/p)(/•2 + n,2)t]] • , (•/p) (l• s + n• •) 

ß [C• cos (l.a + n• •) 

+ D,• sin (l•a + n• •)] 

z = • 

+ • • [1- exp [--(•/p)(/•2 • m•)t]] • • (•/p)(/•2 + m• 

ß cos + 

+ F• sin (l•a + m•B)] 

P = Po- gp •- gp 

z + + 

ß cos (l.. + 

+ F•, sin (l• + m,•)]• 
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The constants Aqr, Bqr, C•, D•, E•, and F• 
can be chosen as independent random variables 
from normal distributions with variances as- 

signed in an appropriate limiting process by 
power spectra in such a way that x -- 
and z -- 3 when paired as functions of either 
a, •, or 3 (as appropriate) would be incoherent. 

At • = 0, x = a,y = fi, andz = •,andu, 
v, and w are obtained by computing x•, y•, and 
z• and substituting x, y, •nd z for a, •, andS. 
Thus 

u • • • Aq• cos (mqy • n•z) (33) 
q 

• Bq• sin (mqy • n•z) 

v: • • C•, cos (l•x • n•z) 

• D•, sin (l•x • n•z) 

w: Z • E•q cos (l•x • mqy) 

• F• sin (l•x • m•y) 

and so each component of the vorticity is 
re•lar, aperiodic, and incoherent, but station- 
ary, in space at t • 0. 

The fluid particle at a • • • • = 0 at t • 0 
is at 

= 

Mter a long time has passed. The particle at 
a = 1,• = 3 = O, is at 

x• = 1+ • • A:• (35) 

y• = • • C• eosl• + D:•sin 

z• = • •E• eosl• + D•,sin 

after a long time h• passed. Two fluid particles 
originally 1 unit apart can end up quite far 
apart. (In equations 34 and 35, A•? equMs A• 
((•/p) (m• • + n• •))-• and so on.) 

This solution illustrates two of the three re- 

quirements set forth by Stewar• for turbulence. 
No transfer of energy from larger to smaller 
scales appears to be e•ibited in this solution, 

because it is linear. This has to be checked in 

an Eulerian reference system, as strange things 
can happen. For example, if we were to try to 
recover u -- u(x, y, z, t), v -- v(x, y, z, t), and 
w ---- w(x, y, z, t) from (32) and its derivatives 
with respect to time, higher-frequency interac- 
tions would appear that might look like non- 
linear interactions. However, with two require- 
ments already fulfilled, there is a possibility 
that either further analysis or finding the sec- 
ond- (or third-) order solution will exhibit this 
third desired feature. 

Other possible linear solutions. Other pos- 
sible linear solutions might be found that would 
represent sustained irregular flow, given a ran- 
domized source of energy for the system. Exten- 
sion to compressible flows would not be diffi- 
cult, and the eddy conduction of heat might be 
a problem that could be treated. The remarks 
of Kamp• de F•riet [1961, p. 111] are pertinent 
here. Upon consideration of the amount of effort 
that has gone into the study of the Lagrangian 
equations compared with the study of the Eu- 
lerian equations, it would appear that much 
could be learned from pursuing the path de- 
scribed above. 

Higher-order solutions. Once the linear prob- 
lem has been formulated, substitution into the 
higher-order equations produces higher-order 
modifications to the original linear problem. 
Sum and difference frequencies appear in the 
second-order solution, and perhaps certain re- 
strictions on possible wave numbers and admis- 
sible frequencies will result. In a randomized 
gravity wave theory developed along these 
lines, the second-order solution yielded the well- 
known change in phase speed that arises when 
the Eulerian equations are studied to third or- 
der [Pierson., 1961]. Thus certain nonlinear fea- 
tures of higher order in the Eulerian system ap- 
pear at lower order in the Lagrangian system. 

To carry out any of the results given above 
to second or third order requires a great deal of 
algebraic manipulation. In time, perhaps this 
will be done and new insight into fluid motions 
will be obtained. 
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