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Integral Diffusivitf 

J. C. SCH6NFELD 

Physical Division, Rijkswaterstaat, The Hague, Netherlands 

Abstract. In oceanography much attention has been paid to the influence of the scale factor 
in diffusion processes. Recently the problem has been approached with the aid of a Fourier 
spectrum representation of diffusible property, and by relating the diffusivity to the wavelength 
parameter. This so-called 'integral diffusion concept' is now being improved by making allow- 
ance for the persistence in time of the turbulent eddies active in the diffusion. The resulting 
mathematical discipline is also developed from a more axiomatic point of view. 

1. Introduction. Diffusion in a medium like 

the ocean is caused predominantly by turbulent 
motion. The older theories of turbulent fluid mo- 

tion were generally modeled after the analytical 
description of molecular viscosity. The problem 
of turbulent shear flow, for instance, has been 
treated by means of a turbulent viscosity. This 
viscosity does not appear to be constant. The 
introduction of the mixing length concept has 
improved this mathematical description. The 
analytical approach to turbulent fluid motion 
problems, however, has never reached the stage 
of a general theory. 

In more recent investigations the application 
of statistical methods has gradually come to the 
fore. Increasing empirical knowledge by ever 
more refined measuring techniques, and the de- 
mand for statistical evaluation of the measure- 

ments, have stimulated the growing emphasis on 
statistics. 

The incomplete success of analytical methods, 
on the other hand, becomes more understand- 
able when we consider that the mathematical 

treatment of the basic equations of fluid motion 
(the Navier-Stokes equation, for example) is 
complicated by their nonlinear character. Yet 
these nonlinearities seem to be an essential 

agency in the generation of turbulance. 
The situation is different in problems of 

turbulent diffusion, provided that we confine 
ourselves to diffusion in fields of autonomous 
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turbulence. By this we understand that the tur- 
bulent motions follow their own laws, not being 
influenced by the variable concentration of the 
diffusate. Then the diffusion forms an essentially 
linear problem, permitting us to proceed by 
analytical methods, such as those inaugurated 
by Kolmogoro# [1931]. 

Initially, turbulent diffusion was treated by 
the classical Fickian equation. The diffusion, 
however, depends on the scale of the predomi- 
nant eddies. Since in different situations differ- 

ent eddies may be dominating, the diffusivity 
cannot be a constant as in Fick's conception. 
Hence it has been attempted to make the tur- 
bulent diffusivity variable, depending, for in- 
stance, on the place, as has been done for 
turbulent viscosity in shear flow. 

The example of stationary, homogeneous tur- 
bulence, however, demonstrates the inadequacy 
of such an approach. Any characteristic of sta- 
tionary, homogeneous turbulence must be inde- 
pendent of place and time. The same must also 
be true for the diffusivity, whereas, on the other 
hand, a constant value for the. diffusivity ignores 
the scale effect. 

An ingenious effo.rt to solve the question was 
made by Richardson [1926], who introduced the 
idea of neighbor diffusivity and postulated his 
neighbor diffusion equation. This concept fulfils 
the requirement that the diffusivity depends on 
a scale measure, the neighbor separation param- 
eter, and yet not on place and time. Therefore 
the neighbor diffusion hypothesis has been a 
very useful instrument not only in meteorology 
but also in oceanography (cf. Stommel [1949]). 

Richardson's hypothesis nevertheless has some 
important limitations, as we shall discuss more 
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fully in section 6. This may explain why in sev- 
eral more recent publications space- and time- 
dependent diffusivities are still being used [Jo- 
seph and Sendnet, 1958; Ozmidow, 1958]. 

Together with these more analytical treat- 
ments of turbulent diffusion, the statistical in- 
vestigation of diffusion processes is advancing. 
From the statistical point of view, diffusivity 
can be defined by the time variation of statisti- 
cal parameters describing a cloud of diffusate. 
An apparent diffusivity may, for instance, be 
derived from the time derivative of the variance 

of the radius vector in the cloud [Frenkiel, 1953]. 
In the present investigation we have attempted 

a more analytical approach, using Fourier trans- 
formations and exploiting the linear character 
of the diffusion problem. Diffusivity is defined 
by a spectrum function in such a way that 
classical diffusivity is included as a special case. 

2. The integral diffusion concept. Let us con- 
sider the diffusion of some physical property by 
a two-dimensional, stationary, homogeneous, and 
isotropic turbulent field. Let the local concen- 
tration of the diffusate be s(t, x, y). This should 
be interpreted as a statistical average (see sec- 
tion 4). Let (u,, u•) denote the vector of trans- 
port by turbulent diffusion. 

In the classical, Fickian theory of diffusion 
transport is defined by the local gradient of the 
concentration: 

The coefficient K is called the diffusivity. 
This approach seems justified when the paths 

of the irregular diffusion movements are small 
compared with the dimensions of the cloud of 
diffusate. The paths of molecular movement usu- 
ally satisfy this condition. In turbulent move- 
ment, however, the paths may be on such a 
large scale that the transport should be sup- 
posed to depend not so much on the local gradi- 
ent of the concentration as on the distribution 

of the concentration in a larger area. We can 
then argue as follows: 

Consider an 'eddy' characterized by a length 
measure p, engaged at the point (x, y). The 
eddy is assumed to produce a velocity w in a 
direction at an angle X with the x axis. Then the 
concentration at (x, y) will incidentally deviate 
from the statistic mean value s(x, y). We esti- 
mate this deviating value by 

s(x-- p cosx, y-- psinx) 

Then the transport will be 

s(x-- p cosx, y-- psinx)w 

in the direction X, with a component 

s(x -- p cos 7(, y -- p sin x)w cos 7( 
in the x direction. 

Here it is assumed that the diffusive transport 
depends on the instantaneous distribution. Al- 
though this is true in classical diffusion, it seems 
more questionable in the case here discussed. 
For the time being, however, we ignore the ob- 
jection. 

To find the resulting transport u•, the above 
expression has to be averaged statistically for 
all possible eddies. Let w • dp/p be the statistic 
weight of the eddy with length p. We assume, 
moreover, that all directions X are equally prob- 
able. Then 

ß s(x -- p cos X, Y -- p sin x) cos X (2) 

where the weighted turbulent velocity 

O• • WW* 

is assumed to be a function of p only. 
Next we apply a Fourier transform to s' 

= LLdxdys(t,x,y)e-•'•(•+•) (3) 
In a similar way transforms U, and U• can be 
associated with u, and u•. 

Then by putting 

• •• d• •(p) Z,(2•) (4) •(•) = 2•W p 
where J• denotes the Bessel function of the first 

order, we can reduce (2) •o an involution in- 
tegral from which follows an associated equa- 
tion for U,: 

= - s = - s 

The equation for U• has been supplied by anal- 
ogy. 

We arrive at similar equations by applying 
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the Fourier transformation to (1). Only K is 
then a constant. 

In molecular diffusion we may suppose that 
o• is large for very small values of p and negligi- 
bly small for values of p greater than a few 
times the molecular free path, say greater than 
e. Then for (r • 1/e we have approximately 

K(e) • dp w(p) = constant 

so that we return to the classical diffusion con- 

cept. 

This will also hold good for turbulent diffu- 
sion when the prevailing eddies are small com- 
pared with the dimensions of the cloud of dif- 
fus•te. 

The definition (2) which replaces (1) suggests 
that K(a) be called the integral digusivity. 

To provide a further interpretation of (5), we 
consider the inverse transformation 

s(t, x, y) 

-- dk d• S(t, k, tz)e :•'•i(xx+•) (6) 
which, by introducing polar coordinates r, •o in 
the xy plane and a, • in the h• plane, takes the 
form 

s(t, r, •) = fo a da 
ß s(t, ..... 

When s is real, the complex function S(t, •r, 
•-]-•r) is conjugate to S(t, (r, •), so that (7) 
can be further reduced to 

= lsl 

ß cos /2w•r cos (•p -- •o) + arg S) (8) 

Now cos (2 • a r cos (• -- •0) •- arg S) repre- 
sents a periodic function in the xy plane in the 
form of a 'wave,' with the crest lines normal to 
the direction •o ---- •, and the wavelength L ---- 
1/a. Hence (8) expresses the distribution s by 
superposition of sine waves with variable wave 
number a and variable direction •. 

If we consider a wave with wave number a, 
it is plausible that this wave is submitted pre- 
dominantly to the diffusive action of eddies with 
dimensions of the same order of magnitude as 
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the wavelength L -- 1/a [Groen, 1954], so that 
the diffusivity becomes a function of a, as we 
see by (5). 

In the absence of an advective mean flow, 
the transport equation in two dimensions takes 
the form 

Os •_ Ou• Ou, 0'-• -•x + • = q (9) 
where q(t, x, y) is the rate at which diffusate 
is released into the field per unit time and per 
unit area. Substitution frmn (5) yields 

OS_ _]_ 4•r•a•K(a) S = Q(t, k •) (10) Ot ' 

where Q is associated with q by Fourier 
transformation. 

The definition of diffusivity here arrived at 
observes on the one hand the dependence on 
the scale of the turbulent eddies, whereas on 
the other hand the diffusivity is independent 
of time and place, just as it should be in a 
stationary, homogeneous field. 

When the turbulent field is no longer sup- 
posed to be isotropic, we have to assume that 
•o also depends on the angle X: •o -- •o(p, X) -- 
•(/j, •). Here /j -- p cos X and • -- p sin X. 

The contents of this section summarize the 

results of a previous report [SchSn[eld, 1959], 
which was communicated to the IUGG con- 

gress at Helsinki in 1960. 
3. The time scale o[ integral diffusion. Now 

we return to the objection raised during the 
derivation of (2). In this derivation we ac- 
counted for the finite length dimensions of the 
eddies. It is reasonable, however, to account 
likewise for a finite delay in their diffusive ac- 
tion. Hence we amend (2) as follows: 

I • •d•j•dv•j fo• Ux • p p r • 

ß ß - - .) (11) 
It is to be expected that the time of delay • is 
correlated to the space shift p, but discussion 
of this point of view will be postponed until 
section 5. 

We introduce a further Fourier transfo• 

with respect to time, so that we obtain 

S(•, X, •) = ff• •tS(t, X, •)e -•'•' (•) 
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and similarly U,, 
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c(f, x, 

U,, and Q. Then, by putting 

ff. •____ d• d v i 3`• + • y e •o 4w%'•p 3 

ß e , 
T 

we arrive at 

2•rif S + 4•r2a-•K(f, 3`, p) S - q (14) 

instead of (10). 
When there is an advective mean flow de- 

fined by the vector (v•, v•), the transport equa- 
tion becomes 

as+ o o O-• •xx (U' + SV') + •yy (U, + SV•) -- q (15) 
Then the Fourier transform (14) is amended 
as follows: 

2•ri/ S(/, 3`, •) + 4•r2o '2 K(I, 3`, •)S(/, 3,, •) 

-L 
ß S(f -- fl, 3` -- 3`1, • -- •{-L1) = Q(f, 3`, •) (16) 

where V• and V• are associated with v• and v• 
by Fourier transformation. 

When the supposition of stationary, homoge- 
neous turbulence is dropped, we may assume 
that o• also depends on time and place: o• -- 
•(t, x, y, r, •, V)-Let •2(f, X, •, r, •, 7) be the 
Fourier transform of o• with respect to t, x, 
and y, and let 

Then the product KS in (16) has to be re- 
placed by the involution integral 

f :• f /•dkl d•l 

ß f:• df• K(f, X, •, fl, 3`1, •tl) S(fl, 3`1, •tl) (17) 
This means that in the diffusive transport in 
waves with a definite wavelength, direction, and 
period there may be interference by waves with 
other wavelengths, etc. 

We have here arrived by induction at what 
we believe to be the most general Eulerian de- 
scription of the mean concentration of diffusate 
in an infinite two-dimensional turbulent field. 

Reduction to one dimension and extension to 
three dimensions are obvious. 

4. Deductive arguments. In the preceding 
sections we have developed the integral diffu- 
sion concept by inductive arguments. A more 
deductive approach is followed in this section. 

The transport equation in a two-dimensional 
continuous medium is 

Os+ 0 0 + 

K.,\Ox•. + •yy•/ = q (18) 
Here K• denotes the molecular diffusivity. The 
flow vector (v•, v•) is assumed to be a function 
of t, x, and y, and moreover of one or more 
statistic parameters, condensed by the symbol 
p: v, = v•(t, x, y, p). 

We suppose that the concentration of dif- 
fusate does not affect the velocity field. 

Even the smallest eddies in the turbulent 

field, controlled by viscosity, are supposed to 
have such dimensions that a great number of 
molecules is involved in a single eddy. The as- 
sumption that the medium is continuous is then 
justified. 

The mean flow can be defined by 

o(t, y). f ap = f y, p) (19) 
and a similar expression for •. Here the inte- 
grations are extended to the whole region of 
possible values of the set of parameters p. 

The distribution mus• also depend on the 
statistic parameters' s - s(t, x, y, p). Averaging 
with respec• to p yields the mean distribution •, 
which was denoted by s in the preceding section. 
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We assume that all the diffusate present in 
the field has been introduced by the releasing 
function q. 

We apply Fourier transformations with respect 
to t, x, and y, so that functions S, V•, V•, and Q 
are associated with s, v•, v.•, and q. We suppose 
that the behavior of s, etc., for t = -t-•o and 
r = •o is such that the Fourier integrals are 
convergent. Then (18) reduces to 

2•i/s(/, x, •, •) + 4• •• s(/, x, •, •) 

ß s(/-/•, x - x•, u - u,, p) = Q(/, x, u) 
(•0) 

When Q, V•, and V, are supposed to be 
known, (20) fores an integral equation for S. 

When we introduce 

ß •(/-/,) a(x- x,) a(u - 

+ 2=i{x v,(/-/,, x - x,, u - u,, p) 

+ u%(/- I,, x - x,, u - u,, p)} 
we can rewrite (20) as follows' 

ß A(/, X, u, •, X•, •, p) 

ß S(•, X•, •, p) = q(•, x, u) 
When S can be solved from this equation, the 
solution must be of the fore 

ß B(/, X, u,/•, X•, u•, p) q(l•, x•, u•) (21) 
Here B must satisfy the equation 

= ,(•- •) ,(x - x•) ,(u- u•) (22) 
where 3 denotes the Dirae •pulse function. 
As A is defined by the spectra V, and V• of 
the turbulent field, B is likewise de•ed by this 
field. 
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Averaging (21) statistically yields 

ß B(/, X, •,/•, X•, •) Q(I•, x•, •) 
When this is inverted we obtain 

ß s(/,., x,., u,.) = Q(/, x, u) (23) 

where C must satisfy the equation 

= •(/-/•) ,(x - x•) ,(• - •) (24) 

We can reduce (23) to (16) as amended by 
(17) if we put 

+ 4r2a2K(/, k, •, /,, k2, 

+ 2ri{XV•([- [2, X- X2, u- 

This may be interpreted as a definition of the 
function K from the given turbulent field. 

•en there is no mean flow and the turbulent 

field is stationary and homogeneous, the fol- 
lowing reduction is possible' 

In a stationary, homogeneous field the mean 
distribution •(t, x, y) and its generating function 
q(t, x, y) are invariant to any translation X, Y 
in space, or to a shift T in the time. 

A translation in space and a shift in time are 
accounted for by multiplication of S and Q by 
the factor 

-2 ri (IT+•X+•Y) 

Hence (23) •elds 

ß e -"•(•'=+x'•+•'• S(/,, X,, 

= e -'"("+•'+•" q(/, x, •) (25) 
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Now the left-hand member has the form of a 

Fourier transformation from [•, X2, • into T, 
X, Y. Inversion of this transformation yields 

c(•, x, •, •, •, •)s(•, x•, •) 

-- dT dX d Y e 

ß e -•'i(•r+xx+"r) Q([, X, 

= q(•, x•, •) •(!- •) •(•- x•) •(•- •) 

Hence C must here be of the form 

ß a(!- i•) a(• - x•) a(•- •) 

whereas (25) reduces to 

•(f, x, •) s(f, x, •) = Q(f, x, •) 

This is identical with (14) if we put 

•(•, x, •): •if + 4•d •(•, x, •) 

In this way we see that (14) can also be in- 
ferred statistically from the basic equation 18. 

5. Simila•ty. We sh•ll now consider in some 
more detail the structure of the diffusivity spec- 
trum in stationary, homogeneous, and isotropic 
turbulence. We assume that there is no mean 

flow. Then (14) reduces to 

2•i• S + 4•a•K S = Q (26) 

where K -- K(f, a). 
So far no special assumption on the nature 

of the turbulent field has been admitted. It is 

well known, however, that turbulent fluid mo- 
tion is generally dominated by patterns of mo- 
tion in which there is a correlation between 

length and time scales. This involves a corre- 
lation between f and a in the spectrum of 
the turbulent velocities. 

It must be expected that a similar correla- 
tion will be found in the diffusivity spectrum 
K(L a). 

Hence, for a definite value of a, • will be 
greatest around • vMue • of [, which is a func- 
tion of a' fo -- fo(a). 

The energy transfer from larger to smMler 
eddies per unit mass of medium will be of the 
order of magnitude 
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In the Kolmogoroff range this energy transfer 
is constant. In a medium like the ocean, how- 
ever, diffusion may also take place in a range 
of the spectrum where the supply of energy 
from external sources is significant. In that case 
E increases with a, say proportional to •r• 
approximately' 

E -- caer t• 
Hence 

/o = co '(a+•)/s (27) 
If the supply of energy from external sources 

follows similar laws in different parts of the 
spectrum, the structure of the turbulence will 
also be similar. Then the diffusivity function K 
may be supposed to be defined by a relation 
of the form 

•[•/(•-•/o),///o] = 0 (28) 
By introducing the diffusion velocity 

W = er -11o = cer-" (29) 
where a- (fi- 1)/3, (28) can also be for- 
mulated as 

(;) 2• F 2• • 
Let F(t') represent the inverse Fourier trans- 

fo• of F(f). Then the inverse transformation 
of (26) with respect to ] yields 

as + (•w•)a fl. • F(•w•) at 

ß S(t - o, •, •) = Q(t, •, •) (31) 
This equation gives rise to the following remark' 

When no diffusate is introduced before the 

instant to (Q - 0 for t < to), S must likewise 
be zero for t < to. This is not possible accord- 
ing to (31), u•ess 

F(t') = 0 for t' < 0 

In that case F can be interpreted as a retarda- 
tion function of the diffusion, and the lower 
limit of the integral in (31) may be replaced 
by zero. 

The definition of E and c may be so chosen 
that F(0) becomes unity. Then 

f F(t') dr' = • 
likewise. 
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We now consider more in particular the dis- 
tribution of st(t, x, y) caused by releasing a unit 
quantity of diffusate at the origin at time zero. 
Then 

q- •(t) $(x) $(y) 
from which we deduce 
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Until now we have confined ourselves to the 
two-dimensional case. In one- and three-dimen- 

sional isotropic media equation 14 remains 
fundamentally the same. 

Let s• (m) denote the m-dimensional unit 
release distribution. Then we require that the 
following reduction theorem be valid: 

Q- 1 

Accordingly we deduce from (26), when substi- 
tuting from (30), 

1 

S• - 2a'Wer 

Let 

(•) 

Then 

1 2wif't' 
2wi/" q- F(f') e (33) 

Substituting from (29), the inverse transforma- 
tion with respect to (r yields 

s, = (27rct) -2/(•- •' H(r(27rcO -•/(• -• ') (35) 
where 

H(r') ---- 27rer' der' Jo(27rer'r')G((er') •-•) (36) 

I-Ienee the form of the unit release distribution 

s, appears to be interrelated with the retarda- 
tion function F. 

When the unit release distribution s, is known, 
the solution for an arbitrary release function 
q(t, x, y) is found as follows: 

From (32) and (26) we deduce that 

S= 

This corresponds to the involution integral 

s(t, x, y)= • • f :•at• dx• dy• 
ß q(t•, x•, y•) s,(t-- t•,x -- x•, y -- y•) (37) 

We m•y remark that, if we postulate (37), it 
can be shown that (14) must be valid. This is 
another way to establish this fundamental 
formula. 

s,(•>(x) = f:• dy s,(2)(x, y) (38) 
A similar theorem can be formulated for the 

reduction from three to two dimensions. 

By applying Fourier transformation to (38) 
with respect to x, and comparing the right-hand 
member with the Fourier transformation (3) for 
St (2•, it is easily verified that 

Similarly 

s,("(x) = s, (a>(x, 0) 

s, <a'(x, •,) = s, © (x, •,, o) 

This is also true in anisotropic fields. 
In isotropic fields the above dimensional 

reduction involves that S• (m) (er) represents the 
same function for all values of m, provided that 
er represents the polar radius of the spectrum 
space in all three cases. 

6. Neighbor di]lusion. On the Eulerian plan 
the neighbor concentration in one dimension is 
defined as an autocorrelation as follows: 

n(t, •, p) - f;• dxs(t, x,p)s(t, x -- •, p) (39) 
Let N be the Fourier transform of n, when X 
is associated with /}. Then it follows from (39) 
that 

•(t, x, p) = s(t, x, p) s*(t, x, p) 

= Is(t, x, p)l • (40) 

Here S • is complex conjugated to S. 
As Ichiye [1950] has shown, (40) indicates 

that •he neighbor distribution only defines the 
amplitude spectrum of the ordinary local dis- 
tribution, but not the phase spectrum, so that 
s cannot be uniquely defined from n. 

When we deal with average distributions, 
another question arises in the translation from 
neighbor to local concentration' 

-- 

Let S denote the statistical average of S and 
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N that of N. Let S denote the random variation 
of S' 

p) - p) - q(t, 
Then it follows from (40) that 

l•(t, X) = [•(t, X)I" -1- [•(t, X, P)I" (41) 
Hence we cannot translate mean neighbor into 
mean local concentration without evaluating the 
random fluctuations in the local distribution. 

If we suppose that the random variations 
are small with respect to the mean distribu- 
tion, so that we may neglect the random con- 
tribution to (41) as a second-order effect, we 
have 

/•(t, X) • [•(t, X)I" (42) 
Hereafter we shall use (42), omitting once more 
the bars denoting mean values. 

Richardson [1926] postulated a neighbor dif- 
fusion equation of the form 

0'-• q- • a(f) = 0 (43) 
where the neighbor diffusivity a is supposed to 
depend on the neighbor separation parameter •. 

The Fourier transform of (43) is 

Ot q- 2rX dX• 
ß A(X•) 2r(X-- X•) N(t,X-- X•) = 0 (44) 

where A(X) denotes the Fourier transform of 
a(•). 

In (43) the neighbor diffusion term is de- 
rived from the instantaneous neighbor distri- 
bution, and so we may criticize (43) as we criti- 
cized the derivation of (10). 

Ignoring retardation effects in the integral 
diffusion as well as in the neighbor diffusion, we 
have in one dimension 

(OS/Or) q- 4• 2 K(x) S = Q 
from which 
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less K is assumed to be constant and A is 
assumed to be 

which involves that a = 2K is constant 
likewise. 

Hence the assumption that the neighbor dif- 
fusivity a depends on the separation /• does 
not seem compatible with the postulate of sta- 
tionary, homogeneous turbulence. 

7. Some particular distributions. Unit release 
distributions s, have been deduced by several 
authors. We shall discuss this against the back- 
ground of the preceding theory. 

When 

F([')- I (46) 
the retardation function becomes 

r(t') = 
which means that retardation is absent. Then 

(31) reduces to 

OS/Or q- 2WtrS = Q (47) 

which is essentially the same as (10). 
After substituting (46) into (33) we obtain 

G -- e-t'•(t') 
where e(t') denotes Heaviside's unit step func- 
tion. Hence 

St -- e -"•r•t•(t) (48) 
This can also be deduced from (47) [SchSn[eld, 
1959]. 

We arrive a• •he same equation 48 for one- 
and •hree-dimensional diffusion. 

When a : 0, so tha• c = W = constant, 
(36) can be solved analyfieally, as well as •he 
corresponding equations for one and •hree di- 
mensions. This yields 

H(r') -- 1 [1 -3- (r')2] 
½m 

and hence 

ON 
q- 8•r2X"(X)N = QS* q- Q*S (45) 

Ot 

can be deduced by using the relation (41). 
Here Q = 0 has to be put in order to make 
(45) comparable to (44). 

Equations 45 and 43 are not compatible un- 

1 Wt 
st -- ,,•+• e(t) (49) c., X/W•t • + r 

where cm -- % 2•r, or •r • for m -- 1, 2, or 3 
dimensions, respectively. 

When the concentration of diffusate has a 

normal distribution, we can satisfy (35) and 
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the corresponding equations for m -- 1 or 3 
by postulating 

8! = b-me-•r(r/b)'•(t) (50) 
where 

)1/(1 1 1 q- a •2•rc! b = -•-• 2 ' 
so that 

-•r (b•)' 
Si'-e 

+a) 

for all m. 

When a -- 0 (Okube, cf. Pritchard and Car- 
penter [1960]), (34) yields 

G(t') - e -•'/a' 
Then we can define F by inversion of (33), and 
finally F by transforming F. The last step has 
been done by numerical integration; the result- 
ing retardation function is represented in Fig- 
ure 1. 
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A third type of distribution is of the form 

_,,,/a (m/2) ! 
sr- •r [m/(1 -- a)]! {(1 -- a)•ct} 

_ 

ß exp (' •/'('-")"")'(0 (51) 

This was derived by Joseph and Sendnet [1958] 
along a line of argument leading to an equation 

Ot-r • cr 

A simplified derivation for a = 0 was given 
by Bourret [1959]. 

Previously MacEwen [1950] had discussed 
the case m = 2, a = 0, of which Joseph and 
Sendner have •ven further applications. 

The case m = 2, a = • was treated by 
Ozmidow [1958]. 

The Fourier transform of (51) with respect 
to r can be deduced analytically when a = 0: 

As this fo•ula is not independent of m, the 
distribution (51) is incompatible with the di- 
mensional reduction theorem (38). 

The unretarded distribution (49) and the 
normal distribution (50) have been represented 
in Fibre 2. 

In order to investigate the retarded diffusion 
in more detail, we consider a retardation func- 
tion of the form 

F(t') -- a e-at'e(t ') (52) 

Then analytical integration is possible when 
a -- 0. Let 

p = %/'1 -- (a/d) 
then 

Si : [! + P {--2/(l+p)}2•'Wo'•' 2p e 

I -- p e{_2/(l_v) 12•r w•t 
2p 

Hence for m -- 2' 

o 

Fig. 1. Retardation functions. 

st -- 2•rp 1 q- p/ q- rs 

+ (53) 
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Fig. 2. Unit release distributions. 

For a -- •, we have p -- 1 and (53) reduces 
to (49). 

When a -- 4, we have p -- 0 and (52) can 
be reduced to 

]2 (wt) 
,, - (54) 

+ r 
with the aid of a limit procedure. 

When a • 4, p becomes imaginary and (53) 
can be reduced •o 

Wt 

tan ? 

ß Im {(2Wt cos'7)2e -2'• -Jr- r2l-a/2•(t) (55) 
if we put p -- i tan ?. The operator Im defines 
the imaginary part of the following quantity. 

In Figure 1 the retardation function (52) 
has been represented for: a = 4 [? = 0]; 
a = «(3 -Jr-%/•) [1' = ,r/51; a = 2 [1, = ,r/4]; 
a = 1 [? = ,r/3]. The corresponding distribu- 
tions appear in Figure 2. 

When a decreases, the retardation becomes 
more prolonged. As illustrated by Figure 2, the 
distribution first becomes more uniform in the 

center and steeper at the periphery when a 
decreases. When a < «(3 q- %/•), the concentra- 

tion in the center is depressed between that of 
the vicinity. For a < 1 the concentration in the 
center is negative. 

It is clear that distributions as for a < i are 

physically impossible, and distributions as for 
I < a • «(3 + %/•) unrealistic. They can be 
explained formally as follows: 

Immediately after the release, there is a strong 
divergent diffusive transport near the origin, 
and very little transport at greater distances. 
The retardation tends to prolong this pattern 
of transport also when the cloud is further 
dispersed. Hence, when the delay is great, the 
cloud may be hollowed out at the center. 

These examples demonstrate that there can 
be retardation to only a limited degree. 

8. Empirical evidence. Turbulence in the 
oceans and their adjacent waters is due to a 
variety of causes, and the type of turbulence 
may therefore be different from one situation 
to another. There are situations, for instance, 
in which the turbulence clearly appears non- 
stationary, or inhomogeneous, or anisotropic, or 
a combination of these possibilities. Neverthe- 
less, to some extent it seems justified to adopt 
the concept of stationary, homogeneous, and 
isotropic turbulence as a basis of description 
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of oceanic turbulence, treating the effects of 
nonstationarity, etc., as secondary and capable 
of elimination by averaging processes. When 
we consider larger scales of time and length, 
for instance, we may expect that nonstationar- 
ity and inhomogeneity on smaller scales are 
smoothed out in the average. Similarly, anisot- 
ropy will be smoothed out by averaging by 
different directions. 

When stationary, homogeneous, and isotropic 
turbulence obeys a law of similarity as formu- 
lated in section 5, two functions appear to be 
sufiScient to characterize the diffusive properties 
of the field. The first function, approximated 
by a power expression, defines the correlation 
between length and time scales of the eddies. 
The second function defines the retardation 
of the diffusive effect. 

The decay of a unit release distribution (35) 
is determined by the power law (27). The shape 
of such a distribution follows from the retarda- 
tion function. Hence both characteristic func- 

tions can be deduced by recording a unit re- 
lease distribution both in time and in space. 

A release experiment partly covering these 
requirements has been described by Folsom and 
Vine [1957]. Since the cloud was only re- 
corded an instant after the release, it is not 

possible to deduce the correlation exponent 
from this experiment. 

Other observations in the ocean seem to in- 

dicate a value of 0 to •a for the exponent a. 
The value a = Y3, valid for the Kolmogoroff 

range, has been ascertained for smaller-scale 
turbulence (say a few kilometers at most) by 
several authors [Ozmidow, 1958, 1959; Ichiye 
and Olson [1960]. On the other hand, a smaller 
value of a seems more probable for larger scales 
[Joseph and Sendner, 1958]. Pritchard and Car- 
penter [1960] even claim a = 0 for rather 
small scales. 

A diffusion process on a very large scale is 
observed in the spreading of the Mediterranean 
Sea water in the Atlantic Ocean. By plotting 
the salinity against the area of the isohaline 
curves, Joseph and Sendner obtained a picture 
from which possible anisotropy has been elim- 
inated. As the distribution of the Mediterranean 

Sea water is steady, broadly speaking, nonsta- 
tionarities in the turbulent field may also be 
supposed to have been eliminated. For lack 
of a better assumption, homogeneity is also 
p•)stulated. Advection by the flow expelled from 
the Strait of Gibraltar must be accounted for. 

As Joseph and Sendner's theory is not en- 
tirely satisfactory, we have recomputed the 
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Fig. 3. Diffusion of the Mediterranean Sea water in the Atlantic Ocean. 
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spreading of the Mediterranean Sea water on 
the basis of the theory here advanced. 

When we assume, with Joseph and Sendner, 
and for lack of a better assumption, that the 
Mediterranean Sea water is absorbed by the 
surrounding waters at great distances from the 
origin, we obtain the following equation in the 
ta plane [SchSn/eld, 1959]: 

- 

+ = (56) 

Here A represents the flow of water from the 
origin, s the excess of the salinity of this water 
over that of the surrounding water, and so the 
original value of this excess. 

The solution of (56) is 

8 0 g. or--1 

- (57) *exp [ (A/e) (•+ a/[l+ øtl) ) 
For a -- 0 this can be transformed analytically 
into 

So (ss) s = %//1 q- 42(c/A)r 2 

which is in very good agreement with the ob- 
servations if the salinity of the surroundings, 
the original salinity of the Mediterranean Sea 
water, and the parameter A/c are suitably 
adapted (see Fig. 3). 

When a = •3, the inverse transformation of 
(57) requires numerical integration. We are en- 
gaged in this, but no result is available. Esti- 
mating from the function (57) we expect that 
a = •3 will not fit as well as a = 0. 

For a better evaluation of this question, how- 
ever, the possible mixing of the Mediterranean 
Sea water with the overlying Atlantic Ocean 
water should also be taken into consideration; 
this is possible with numerical integration. 

When we adopt a = 0, we can interpret the 
experiment of Folsom and Vine, for instance, by 
(49), (50), or (54). This has been represented 
in Figure 4. 

The unretarded distribution (49) seems to 
fit better than the normal distribution (50). 
The somewhat intermediate distribution (52) 
yields a still better fit. This would indicate that 
there is some retardation but less than should 

be assumed to explain a normal distribution 
(see Fig. 1). 

This conclusion is in agreement with the in- 
terpretation of Pritchard and Carpenter [1960]. 
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Fig. 4. Diffusion of radioactive matter. 
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